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Abstract: A new Rogosinski-type kernel function is constructed using kernel function of partial

sums Sn(f ; t) of generalized Fourier series on a parallel hexagon domain Ω associating with three-

direction partition. We prove that an operator Wn(f ; t) with the new kernel function converges

uniformly to any continuous function f(t) ∈ C∗(Ω) (the space of all continuous functions with

period Ω) on Ω . Moreover, the convergence order of the operator is presented for the smooth

approached function.
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1 Introduction

It is well known that Fourier methods play a key role in numerical analysis and its appli-

cations. There has been a lot of work relating to Fourier series (see [1]). As we know, the

original results are first studied in the univariate case and then generalized into multivariate

cases in a high dimension by techniques of tensor product. Strictly, the tensor product ap-

proach is still staying in the one dimensional level via decreasing dimension. The approach

is only suitable for rectangular domains in 2-dimension case. Therefore, researchers are now

paying more and more attention to the studies on how to generalize Fourier methods into

high dimension, beyond box domains. In 2003, Sun[2] proposed Fourier methods on parallel

hexagon domain associating with three-direction partition. It has been pointed that the

most concepts and results of Fourier methods on tensor-product case can be moved on non

tensor-product case. Reference [3] presented Cubature formula and interpolation on parallel
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hexagon domain, in which Lebesgue constant of the interpolation polynomial is shown to

be O[(log n)2]. Reference [2] proved that the second order partial sum of Fourier series of

f(t) ∈ C(Ω) (the space of all continuous functions f(t) on Ω) converges to f(t). But, theo-

rem 3.5 of [2] shows that the first partial sum of Fourier series of f(t) ∈ C(Ω) can’t converge

uniformly to f(t). In view of this, a new Rogosinski-type kernel function is constructed

using the kernel function of partial sums Sn(f ; t) of generalized Fourier series in [2]. The

operator Wn(f ; t) associating with the new kernel function converges uniformly on Ω .
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And then, a new three-direction coordinate system R̃
2 = O(n1, n2, n3) is set up as follows:

an one-to-one correspondence is established between the point t = (t1, t2, t3) under a three-

direction coordinate system and the point x = (x1, x2) ∈ R
2 under an original Cartesian

coordinate system (see Fig. 1.1), where
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Fig. 1.1 3-direction coordinates

It is easy to verify that the three-direction coordinate satisfies the following identity

t1 + t2 + t3 = 0.

We take the following parallel hexagon, drawn in Fig. 1.1, as our basic domain

Ω = {t = (t1, t2, t3) ∈ R̃
2| − 1 ≤ t1, t2, t3 ≤ 1, t1 + t2 + t3 = 0, t1, t2, t3 ∈ R}.


