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Abstract: Suppose that there are two populations x and y with missing data on

both of them, where x has a distribution function F (·) which is unknown and y has

a distribution function Gθ(·) with a probability density function gθ(·) with known

form depending on some unknown parameter θ. Fractional imputation is used to

fill in missing data. The asymptotic distributions of the semi-empirical likelihood

ration statistic are obtained under some mild conditions. Then, empirical likelihood

confidence intervals on the differences of x and y are constructed.
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1 Introduction

Missing datas are common in opinion polls, market research surveys, medical studies and

other scientific experiments. In this situation, the usual inference procedure cannot be

applied directly. A common method for handling incomplete data is to impute a value for

each missing variables and then apply usual statistical methods to the “complete data” as

if they were true observations. Missing data analysis covers a variety of problems that are

often seen in practical applications (see [1]). Owen[2]–[5] first put forward the technique

of empirical likelihood in nonparametric statistics. Recently, Wang and Rao[6]–[7] use a

empirical likelihood method to construct confidence intervals for the response means in linear
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and nonparametric models. In this paper, we focus on constructing confidence intervals for

various differences of two populations x and y which have distribution functions F (·) and

Gθ(·), where F (·) is unknown and Gθ(·) with probability density function gθ(·) is of known

form depending on some unknown parameter θ. Let ∆ denote the differences of x and y

such as the differences of the means and the distribution functions of two populations. This

model is often seen in practical applications. For example, doctors intend to use a new

medicine A to cure a specified illness. B is also used to treat the disease. B is known very

well and A is less known by doctors. Many clinic experiments should be done to obtain

the data of curative effects between A and B. We are interested in comparing noticeable

differences between A and B. We take B and A as x and y, respectively. Thus, we want to

know the differences ∆ of x and y, such as

∆ = Ex − Ey, ∆ = P (x ≤ y), ∆ = F (x0) − Gθ0
(x0) (x0 is fixed)

and so on. In this paper, we suppose the following information is available

EF ω(x, θ, ∆) = 0, (1.1)

where ω is a function of known form.

In this paper, we use the information (1.1) to construct empirical likelihood confidence

intervals on ∆. Thus, we can test the hypotheses on the differences ∆ of x and y. We

suppose that the hypothesis is

H0 : ∆ = ∆0 for some known ∆0.

If we wish to test the hypothesis that there is no noticeable differences between x and y,

we let ∆0 = 0. If ∆0 is in the above interval, we accept the hypothesis; otherwise, the

hypothesis should be rejected.

Consider the following simple random samples of incomplete data associated with pop-

ulations (x, δx) and (y, δy),

(xi, δxi
), i = 1, · · · , m, (yj , δyj

), j = 1, · · · , n,

where

δxi
=

{
0, if xi is missing;

1, else,

δyj
=

{
0, if yj is missing;

1, else.

Suppose that x and y are missing completely at random (MCAR)

P (δxi
= 1|x) = P (δxi

= 1) = P1(constant),

P (δyj
= 1|y) = P (δyj

= 1) = P2(constant).

We also assume that (x, δxi
) and (y, δyj

) are independent. Let

rx =
m∑

i=1

δxi
, mx = m − rx, ry =

n∑

i=1

δyj
, my = n − ry,

srx
= {i : δxi

= 1, i = 1, · · · , m}, smx
= {i : δxi

= 0, i = 1, · · · , m},

srj
= {j : δyj

= 1, j = 1, · · · , n}, smy
= {j : δyj

= 0, j = 1, · · · , n}.


