Commuting Toeplitz Operators with Harmonic Symbols on $A^2(\overline{\mathbb{D}}, d\mu)^*$

WANG CHUN-MEI

(Institute of Mathematics, Jilin University, Changchun, 130012)

Communicated by Ji You-qing

Abstract: For any given symmetric measure μ on the closed unit disk $\overline{\mathbb{D}}$, we apply the Berezin transform to characterizing semi-commuting and commuting Toeplitz operators with bounded harmonic symbols on $A^2(\overline{\mathbb{D}}, d\mu)$. Key words: symmetric measure, Toeplitz operator, Berezin transform 2000 MR subject classification: 47B35 Document code: A Article ID: 1674-5647(2009)02-0165-12

1 Introduction

Let $\mathbb{D}, \overline{\mathbb{D}}$ and $\partial \mathbb{D}$ denote the open unit disk, the closed unit disk and the unit circle in the complex plane \mathbb{C} , respectively. A finite positive Borel measure μ supported on $\overline{\mathbb{D}}$ is said to be a symmetric measure if there is a finite positive Borel measure ν supported on the closed unit interval [0, 1] such that

$$\int_{\overline{\mathbb{D}}} f(z) \mathrm{d}\mu(z) = (2\pi)^{-1} \int_0^{2\pi} \mathrm{d}\theta \int_0^1 f(re^{\mathrm{i}\theta}) \mathrm{d}\nu(r)$$

for any continuous function f(z) on $\overline{\mathbb{D}}$. In this case, the measure ν is called the radial component of μ . In order that μ is a normalized measure on $\overline{\mathbb{D}}$, we suppose $\nu([0,1]) = 1$. Throughout this paper, μ always denotes a normalized symmetric measure on $\overline{\mathbb{D}}$ and ν always denotes the radial component of μ . For $1 \leq p < +\infty$, let $L^p(\overline{\mathbb{D}}, d\mu)$ denote the space of measurable functions f on $\overline{\mathbb{D}}$ such that

$$||f||_p = \left(\int_{\overline{\mathbb{D}}} |f(z)|^p \mathrm{d}\mu(z)\right)^{1/p} < +\infty.$$

 $A^p(\overline{\mathbb{D}}, d\mu)$ is the set of those functions in $L^p(\overline{\mathbb{D}}, d\mu)$ which are analytic on \mathbb{D} . $L^{\infty}(\overline{\mathbb{D}}, d\mu)$, $L^{\infty}(\mathbb{D}, dA)$ and $L^{\infty}(\partial \mathbb{D}, d\theta)$ denote the set of the essentially bounded measurable functions on $\overline{\mathbb{D}}$, \mathbb{D} and $\partial \mathbb{D}$ with respect to $d\mu$, dA and $d\theta$, respectively, where dA is the normalized

^{*}Received date: Oct. 7, 2008.

Foundation item: The Specialized Research Fund (20050183002) for the Doctoral Program of Higher Education and NSF (10371049) of China.

area measure on \mathbb{D} . As usual, the space of bounded analytic functions on \mathbb{D} is denoted by $H^{\infty}(\mathbb{D}).$

Suppose that

 $\nu([\epsilon, 1]) > 0, \qquad 0 \le \epsilon < 1.$

Frankfurt^[1] obtained the following results.

(1) Let

$$\omega(n) = \|z^n\|_2^2 = \int_0^1 r^{2n} \mathrm{d}\nu(r).$$

For $z \in \mathbb{D}$,

$$K_z(w) = \sum_{n=0}^{\infty} \frac{(\overline{z}w)^n}{\omega(n)}$$

is the reproducing kernel of $A^2(\overline{\mathbb{D}}, d\mu)$, that is,

$$f(z) = \langle f, K_z \rangle$$
 for any f in $A^2(\overline{\mathbb{D}}, d\mu)$.

In fact, if σ is a compact subset of \mathbb{D} , $\{K_z : z \in \sigma\}$ is a uniformly bounded set of linear functionals on $A^2(\overline{\mathbb{D}}, d\mu)$. Moreover, $A^2(\overline{\mathbb{D}}, d\mu)$ is a Hilbert space with the inner product

$$\langle f, g \rangle = \int_{\overline{\mathbb{D}}} f(z) \overline{g(z)} d\mu(z).$$

- (2) The set of analytic polynomials is dense in $A^2(\overline{\mathbb{D}}, d\mu)$.
- (3) If $\nu(\{1\}) > 0$, then

$$A^2(\overline{\mathbb{D}}, \mathrm{d}\mu) = H^2(\partial \mathbb{D})$$

with equivalent norms, where $H^2(\partial \mathbb{D})$ is the classical Hardy space on $\partial \mathbb{D}$.

It follows from (3) that if $\nu(\{1\}) > 0$, then for any $f \in A^2(\overline{\mathbb{D}}, d\mu)$, the radial limit $\lim_{r \to 1} f(re^{i\theta}) \text{ exists for almost all } \theta \in [0, 2\pi] \text{ (see Chapter 1 of [2])}.$

In addition, if, for any z in \mathbb{D} , $K_z(w)$ is the reproducing kernel of $A^2(\overline{\mathbb{D}}, d\mu)$, then

$$\nu([\epsilon, 1]) > 0, \qquad 0 \le \epsilon < 1$$

(see Proposition 3.19 of [3]). In this paper we always suppose that $\nu([\epsilon, 1]) > 0$ for every $0 \le \epsilon \le 1.$

In particular, if $d\nu(r) = 2rdr$, then $A^2(\overline{\mathbb{D}}, d\mu)$ is just the Bergman space $A^2(\mathbb{D}, dA)$. For more results on the Bergman space $A^2(\mathbb{D}, dA)$, the reader is referred to [4] and [5]. If ν is a single unit point mass at 1, then $A^2(\overline{\mathbb{D}}, d\mu)$ is just the classical Hardy space $H^2(\partial \mathbb{D})$. A reference for the classical Hardy space is Duren's book [2]. Moreover, given any symmetric measure μ on $\overline{\mathbb{D}}$, if $f \in H^2(\partial \mathbb{D})$ then $f \in A^2(\overline{\mathbb{D}}, d\mu)$. In fact, if the Taylor series of $f \in H^2(\partial \mathbb{D})$ is $\sum_{n=0}^{\infty} a_n z^n$, then

$$\sum_{n=0}^{\infty} |a_n|^2 \omega(n) \le \sum_{n=0}^{\infty} |a_n|^2 < \infty$$

since $\omega(n) \le 1$.

since
$$\omega(n) \leq 1$$
.
Let P be the orthogonal projection from $L^2(\overline{\mathbb{D}}, d\mu)$ onto $A^2(\overline{\mathbb{D}}, d\mu)$. Then
 $Pf(z) = \langle Pf, K_z \rangle = \langle f, K_z \rangle = \int_{\overline{\mathbb{D}}} f(w) \overline{K_z(w)} d\mu(w) = \int_{\overline{\mathbb{D}}} f(w) K_w(z) d\mu(w), \qquad z \in \mathbb{D}$