Normal Functions Concerning Shared Values*

Wang Xiao-jing

(Department of Mathematics, Huaiyin Teachers College, Huaiyin, Jiangsu, 223300)

Communicated by Ji You-qing

Abstract: In this paper we discuss normal functions concerning shared values. We obtain the follow result. Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ , and a be a nonzero finite complex number. If for any $f \in \mathcal{F}$, the zeros of f are of multiplicity, f and f' share a, then there exists a positive number M such that for any $f \in \mathcal{F}$, $(1-|z|^2)\frac{|f'(z)|}{1+|f(z)|^2} \leq M$.

Key words: shared value, normal family, normal function

2000 MR subject classification: 30D35, 30D45

Document code: A

Article ID: 1674-5647(2009)05-0472-07

1 Introduction

Let f and g be two meromeorphic functions in a domain D of the complex plane, and a, b be two complex numbers. We say that $f = a \iff g = b$, if $\bar{E}_f(a) = \bar{E}_g(b)$. Especially, we say f and g share the value a, if $\bar{E}_f(a) = \bar{E}_g(a)$. We say that $f = a \implies g = b$, if $\bar{E}_f(a) \subseteq \bar{E}_g(b)$. Here

$$\bar{E}_f(a) = f^{-1}(a) \cap D = \{ z \in D : f(z) = a \}.$$

A meromorphic function f on $\mathbb C$ is called a normal function if there exists a positive number M, such that

$$f^{\#}(z) = \frac{|f'(z)|}{1 + |f(z)|^2} \le M.$$

A meromorphic function f in the unit disc Δ is called a normal function if there exists a positive number M such that

$$(1-|z|^2)f^{\#}(z) = (1-|z|^2)\frac{|f'(z)|}{1+|f(z)|^2} \le M.$$

Schwick^[1] proved the following theorem.

Theorem A Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ , and a, b, c be distinct complex numbers. If for any $f \in \mathcal{F}$, f and f' share a, b and c, then \mathcal{F} is a

Foundation item: The NSF (09KJB110002) of Jiangsu Education Office.

^{*}Received date: May 19, 2009.

normal family in the unit disc Δ .

Pang and Zalcman^[2] improved the Theorem A and obtained the following result.

Theorem B Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ , and a, b be two distinct complex numbers. If for any $f \in \mathcal{F}$, f and f' share a and b, then \mathcal{F} is normal in the unit disc Δ .

In 2000, Pang^[3] found a connection between normal family and normal function. He proved the following theorem.

Theorem C Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ , and a, b, c be distinct finite complex numbers. If for any $f \in \mathcal{F}$, f and f' share a, b and c, then there exists a positive number M = M(a,b,c) such that for any $f \in \mathcal{F}$,

$$(1 - |z|^2) \frac{|f'(z)|}{1 + |f(z)|^2} \le M.$$

It is natural to ask whether for Theorem B one can obtain a conclusion like Theorem C. In this paper we study the problem and obtain the following theorems.

Theorem 1.1 Let f be a meromorphic function on \mathbb{C} , and a be a nonzero finite complex number. If the zeros of f are of multiple, f and f' share a, then f is a normal function on \mathbb{C} .

Theorem 1.2 Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ , and a be a nonzero finite complex number. If for any $f \in \mathcal{F}$, the zeros of f are of multiplicity, f and f' share a, then there exists a positive number M such that for any $f \in \mathcal{F}$,

$$(1 - |z|^2) \frac{|f'(z)|}{1 + |f(z)|^2} \le M.$$

2 Some Lemmas

Lemma 2.1^[4] Let \mathcal{F} be a family of meromorphic functions in the unit disc Δ , all of whose zeros have multiplicity at least k. Suppose that there exists $A \geq 1$ such that $|f^{(k)}(z)| \leq A$ whenever f(z) = 0. Then if \mathcal{F} is not normal, there exist, for each $0 \leq \alpha \leq k$,

- (a) $a \ number \ 0 < r < 1;$
- (b) points z_n , $|z_n| < r$;
- (c) functions $f_n \in \mathcal{F}$; and
- (d) positive numbers $\rho_n \to 0$

such that

$$\rho_n^{-\alpha} f_n(z_n + \rho_n \xi) = g_n(\xi) \to g(\xi)$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C} , all of whose zeros have multiplicity at least k, such that

$$q^{\#}(\xi) < q^{\#}(0) = kA + 1.$$