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Abstract: The quasi-periodic pendulum type equations are considered. A sufficient

and necessary condition of Lagrange stability for this kind of equations is obtained.

The result obtained answers a problem proposed by Moser under the quasi-periodic

case.
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1 Introduction

The Lagrange stability of pendulum type equations is an important topic, which is proposed

by Moser[1]. Moser[2], Levi[3] and You[4] investigated such topic for the periodic situation,

respectively. In particular, You obtained a sufficient and necessary condition for Lagrange

stability of the equation (1.1) in [4].

Recently, Bibikov[5] developed a KAM theorem for nearly integrable Hamiltonian systems

with one degree of freedom under the quasi-periodic perturbation. In fact, his KAM theorem

is of parameter type. Using this theorem he discussed the stability of equilibrium of a class

of the second order nonlinear differential equations.

In this note we study quasi-periodic pendulum type equations. Under the standard

Diophantine condition of frequency ω, a sufficient and necessary condition of Lagrange

stability for quasi-periodic pendulum type equations is obtained. This answers Moser’s

problem under the quasi-periodic case.
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We consider a nonlinear pendulum type equation
d2x

dt2
+ p(t, x) = 0, (1.1)

where

p(t, x+ 1) = p(t, x),

and p(t, x) is a quasi-periodic function in t with basic frequencies ω = (ω1, · · · , ωn), that is,

p(t, x) = f(ωt, x) (1.2)

for some function f(θ, x) defined on T n × T 1. Here T n = Rn/Zn is an n-dimensional torus.

Assume that f(θ, x) is a real analytic function on T n × T and the frequency ω satisfies

Diophantine condition as follows:

|〈k, ω〉| ≥ γ|k|−(n+1), 0 6= k ∈ Zn (1.3)

for a given γ > 0, where 〈 · , · 〉 denotes the usual inner product.

We are in a position to state the main result of this paper.

Theorem 1.1 Assume that (1.3) holds. Then system (1.1) is Lagrange stable if and only

if ∫

T n×T 1

f(θ, x)dθdx = 0. (1.4)

Moreover, if (1.3) and (1.4) hold, equation (1.1) possesses infinitely many quasi-periodic

solutions with n+ 1 basic frequencies (including ω1, · · · , ωn).

• Diophantine condition (1.3) can be replaced by a general form

|〈k, ω〉| ≥ γ|k|−τ∗ , 0 6= k ∈ Zn (1.5)

with some constant τ∗ > n. Here we assume (1.3) for the convenience of the proof of

Theorem 1.1.

• Huang[6] considered a class of almost periodic pendulum-type equations. He proved the

existence of unbounded solutions of the equations. Summing up the works developed

by Mose[2], Levi[3], You[4] and Huang[6], respectively, and Theorem 1.1, we can obtain

a satisfactory answer to Moser’s problem.

• Recently, Lin and Wang[7] have concerned with a dual quasi-periodic system as follows:
d2x

dt2
+
∂g

∂x
(t, x) = 0, (1.6)

where g(t, x) is quasi-periodic in t and x with frequencies Ω1 = (ω1, · · · , ωn) and

Ω2 = (ωn+1, · · · , ωn+m), respectively. Under the assumptions

(Ω1,Ω2) ∈ Oγ =
{
(Ω1,Ω2) ∈ Rn+m : |〈k,Ω1〉 + 〈l,Ω2〉| ≥ γ(|k| + |l|)−τ∗ ,

∀ 0 6= (k, l) ∈ Zn+m, τ∗ > n+m
}

and

∀ j ∈ N, ∃ A(j) ≥ j, s.t. (Ω1, A(j)Ω2) ∈ Oγ ,

they proved that all the solutions of (1.6) are bounded (see [7]). It is easy to find that

as m = 1, their modified Diophantine condition is stronger than (1.5); in addition,

the result of [7] is a sufficient condition to ensure Lagrange stability. This differs from

Theorem 1.1.


