A Class of Left *E*-adequate Semigroups^{*}

Li Yong-hua 1 and He Yong 2

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631)
School of Computer, Hunan University of Science and Technology, Xiangtan, Hunan, 411201)

Communicated by Du Xian-kun

Abstract: In this paper we establish a construction of a class of left E-adequate semigroups by using semilattices of cancellative monoids and fundamental left E-adequate semigroups. We first introduce concepts of type μ^+ (μ^* , μ) abundant semigroups and type μ^+ left E-adequate semigroups. In fact, regular semigroups are type μ^+ abundant semigroups and inverse semigroups are type μ^+ left E-adequate semigroups. Next, we construct a special kind of algebras called E^+ -product. It is proved that every E^+ -product is a type μ^+ left E-adequate semigroup, and every type μ^+ left E-adequate semigroup is isomorphic to an E^+ -product of a semilattice of cancellative monoids with a fundamental left E-adequate semigroup. Finally, as a corollary of the main result, it is deduced that every inverse semigroup is isomorphic to an E^+ -product of a Clifford semigroup by a fundamental inverse semigroup.

Key words: type μ^+ semigroup, abundant semigroup, left *E*-adequate semigroup, *E*⁺-product

2000 MR subject classification: 20M10 **Document code:** A **Article ID:** 1674-5647(2010)04-0289-15

1 Introduction

El-Qallali *et al.*^[1] presented a Munn type representation for a class of *E*-semiadequate semigroups. As special cases of *E*-semiadequate semigroups they introduced three classes of abundant semigroups: left *E*-adequate semigroups, right *E*-adequate semigroups and *E*adequate semigroups which are both left *E*-adequate and right *E*-adequate. The aim of this paper is to establish a construction of a class of left *E*-adequate semigroups, showing that the "building bricks" in this construction are semilattices of cancellative monoids and fundamental left *E*-adequate semigroups.

In Section 2, we first recall some known results of abundant semigroups, and introduce

^{*}Received date: Sept. 18, 2008.

Foundation item: The NSF (04JJ40001) of Hunan and the Scientific Research Foundation (05A014) of Hunan Education Department.

concepts of type μ^+ , μ^* and μ abundant semigroups. Next we define type μ^+ left *E*-adequate semigroups. In fact, a regular semigroups is a type μ abundant semigroup but not a type μ^+ left E-adequate semigroup in general. In particular, an inverse semigroup is a type μ and also a type μ^+ left *E*-adequate semigroup. We give an example which is a type μ^+ left E-adequate semigroup, but neither type μ^* and nor right E-adequate. In Section 3, we first use semilattices of cancellative monoids and fundamental left E-adequate semigroups to construct a class of algebras, E^+ -products. Next, we prove that every E^+ -product is a type μ^+ left E-adequate semigroup. Section 4 shows that every type μ^+ left E-adequate semigroup can be constructed in this way. Finally, as a corollary of the main theorem we obtain that every inverse semigroup is isomorphic to a Y-product of a Clifford semigroup and a fundamental inverse semigroup.

In this paper, for the undefined notion and notations the reader is referred to [1]-[7].

2 Preliminaries

We first recall some basic facts about the equivalence relations \mathcal{L}^* and \mathcal{R}^* (or denoted by $\mathcal{L}^*(S)$ and $\mathcal{R}^*(S)$ respectively in case of ambiguity) on a semigroup (see [8], [9]). For elements a, b of a semigroup S, $a\mathcal{L}^*b$ means that

if and only if

$$ax = ay$$

$$bx = by, \qquad x, y \in S^1$$

The relation \mathcal{R}^* is defined dually. Evidently, \mathcal{L}^* is a right congruence and \mathcal{R}^* is a left congruence on S. For any result about \mathcal{L}^* there exists a dual result for \mathcal{R}^* . In particular, we emphasize that an idempotent is a right (left) identity for its \mathcal{L}^* -class (\mathcal{R}^* -class). We define

$$\mathcal{H}^* = \mathcal{L}^* \cap \mathcal{R}^*.$$

The \mathcal{L}^* -class (\mathcal{R}^* -class, \mathcal{H}^* -class) containing the element a of the semigroup S is denoted by $L_a^*(R_a^*)$ or by $L_a^*(S)(R_a^*(S))$ in case of ambiguity. A semigroup is called abundant if each \mathcal{L}^* -class and each \mathcal{R}^* -class contain an idempotent (see [5]). As in [2], for $a \in S$, a^* denotes a typical idempotent in $L^*_a(S) \cap E(S)$ and a^+ denotes a typical element in $R_a^*(S) \cap E(S)$. Let E be a semilattice and a subsemigroup of an abundant semigroup S. We say that S is left (right) E-adequate (see [1]) if every \mathcal{R}^* -class (\mathcal{L}^* -class) of S contains an idempotent of E. If S is left and right E-adequate, then S is E-adequate. Further, if S is E-adequate and E = E(S), then we say that S is adequate (see [5]). If S is a left (right) E-adequate semigroup, the notation E denotes a fixed semilattice in S such that $R_a^* \cap E \neq \emptyset$ $(L_a^* \cap E \neq \emptyset)$ for all $a \in S$. Let X be a non-empty set, the notation $\mathcal{T}(X)$ (see [7]) denotes the full transformation semigroup of X. The notation ε_X denotes the identity transformation on X.

Lemma 2.1([6], Corollary 1.2) Let a be an element of a semigroup S and e be an idempotent of S. Then the following conditions are equivalent: