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Abstract: In this paper, we give sufficient conditions to analyze the practical stabil-

ity in the pth mean of stochastic differential equations with discontinuous coefficients.

The Lyapunov-like function plays an important role in analysis. Some numerical com-

putations are carried out to illustrate the theoretical results.
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1 Introduction

It is well-known that the theory of stability in the sense of Lyapunov has been widely

developed and has been vastly applied in many fields (see [1] and [2]). However, in some

cases, a system may be stable or even asymptotically stable in the Lyapunov sense and

it may still be completely useless in practice (see [3]), since the domain of attraction may

not be large enough to allow the desired deviation to conceal out. On the other hand, a

system may be unstable in the sense of Lyapunov and it may oscillate sufficiently near a

state whose performance is acceptable in practice (see [4]). For example, many aircrafts

and missiles behave in this manner. Thus, from practical consideration, a notion which is

neither weaker nor stronger than Lyapunov stability is proposed by LaSalle and Lefschetz[3]

and is developed by Michel[5], Bernfeld and Lakshmikantham[6], Martynyuk[7] and others. A

systematic study on the practical stability is collected in the book [8]. Michel[9], Michel and

Porter[10] and Zhai and Michel[11] also studied the practical stability of the deterministic

discontinuous differential equations.
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In the development of modern mathematics, the theory of stochastic differential equa-

tion becomes even more important. It has been successfully applied to many fields involving

nearly all aspects of reality. Many people have paid much attention to the qualitative prop-

erties of stochastic differential equations, such as the stability properties. Feng, Liu and

Guo[12] applied the Lyapunov-like functions and the basic comparison principle to stochas-

tic systems (see [13] and [14]) and established criteria for various types of practical stability

in the pth mean of nonlinear stochastic systems. Ting[15] studied the almost sure practi-

cal stability with respect to some given continuous time-varying sets of the state space for

stochastic differential systems by means of Lyapunov-like functions and comparison princi-

ple. Sathananthan and Suthaharan[16] generalized the concept of practical stability to the

large-scale stochastic systems of the Itô-Doob type and established sufficient conditions for

various types of practical stability in the pth mean.

In this paper, we concentrate on studying the practical stability and uniformly practical

stability in the pth mean of stochastic differential equations with discontinuous coefficients,

respectively.

This paper is organized as follows. In Section 2 we introduce the basic assumptions and

then collect some definitions on practical stability in the pth mean. In Section 3 we study

the practical stability and uniformly practical stability in the pth mean of the stochastic

differential equations, respectively. In Section 4 we analyze some examples with numerical

computation to illustrate the theoretical results.

2 Basic Assumptions

In this section we describe and discuss the basic assumptions for this work.

Let Rn denote the n-dimensional Euclidean space. J = [t0, t0+T ), where t0 and T ∈ R+

and T may be finite or infinite. Let (Ω ,F , P ) be a complete probability space and ξ be a

random variable , E(ξ) and E(‖ξ‖p) (p ≥ 1) denote the mean and pth mean of ξ, respectively.

A property is said to hold almost everywhere (abbrev. as a.e.) if the set of points where

it fails is a set of measure zero.

In order to distinguish the fixed variable and random variable, we denote the fixed

variable and random variable by x and X , respectively. Furthermore, we denote the random

process by X(t).

Consider a stochastic system described by the following n-dimensional stochastic differ-

ential equation:
{

dX(t) = b(X(t))dt + σ(X(t))dW (t),

X(t0) = X0,
(2.1)

where dX is a stochastic increment in the sense of Itô, W (t) is an r-dimensional normalized

Wiener process (r ≥ 1), the coefficients satisfy b : Rn → Rn (the drift vector), σ : Rn →
Rn×r and a =: σσT : Rn → Rn × Rn (the diffusion matrix).

We assume that

(H1) The functions b(·) and σ(·) are locally bounded Borel measurable functions.


