Uniqueness of Meromorphic Functions Sharing One Set^{*}

QI JIAN-MING AND YI HONG-XUN

(School of Mathematics, Shandong University, Jinan, 250100)

Communicated by Ji You-qing

Abstract: In this paper, we study uniqueness of meromorphic functions sharing one set, and obtain some results, which improve and extend the original results.
Key words: meromorphic function, Nevanlinna theory, uniqueness, sharing value 2000 MR subject classification: 30D35, 30D45
Document code: A
Article ID: 1674-5647(2010)04-0353-08

1 Introduction

In this work, by meromorphic function we always mean a meromorphic function in the complex plane \mathbb{C} . We assume that the reader is familiar with the standard notation of value distribution theory, and this can be found, for instance, in [1] or [2].

Let f be a nonconstant meromorphic function. We use $N_{(k}\left(r, \frac{1}{f}\right)$ to denote the counting function for the zeros of f with multiplicity $\geq k$ and counting multiplicities, while by $N_{k}\left(r, \frac{1}{f}\right)$ the counting function of the zeros of f with multiplicities $\leq k$ and counting multiplicities. We denote by S(r, f) any function satisfying

$$S(r, f) = o(T(r, f)), \qquad r \to \infty,$$

possibly outside a set of finite measure. Define

$$\Theta(\infty, f) = 1 - \lim_{r \to \infty} \sup \frac{\bar{N}(r, f)}{T(r, f)},$$

$$\delta_2(0, f) = 1 - \lim_{r \to \infty} \sup \frac{\bar{N}\left(r, \frac{1}{f}\right) + \bar{N}_{(2}\left(r, \frac{1}{f}\right)}{T(r, f)}.$$

Let S be a set of complex numbers. Define

$$E(S, f) = \bigcup_{a \in S} \{ z \mid f(z) - a = 0 \},\$$

*Received date: May 18, 2009.

Foundation item: The NSF (10771121) of China, the NSF (Z2008A01) of Shandong and the RFDP (20060422049).

where each zero of f(z) - a with multiplicity m is counted m times in E(S, f). The notation $\overline{E}(S, f)$ expresses the set which contains the same points as E(S, f) but without counting multiplicities. We denote by $E_{(k}(S, f)$ the counting function of the zeros of f - a with multiplicities $\geq k$ and counting multiplicities, $E_{k}(S, f)$ the counting function of the zeros of f - a with multiplicities $\leq k$ and counting multiplicities. The notations $\overline{E}_{(k}(S, f)$ and $\overline{E}_{k}(S, f)$ express the sets which contain the same points as $E_{k}(S, f)$ and $E_{k}(S, f)$ respectively, but ignoring multiplicities.

In 1976, $Gross^{[3]}$ posed the following question.

Question A Does there exist a finite set S such that, for any pair of nonconstant entire functions f and g, E(S, f) = E(S, g) implies $f \equiv g$?

If such a finite set exists, a natural question is the following.

Question B What is the smallest cardinality for such a finite set?

Yi^[4] first gave an affirmative answer to Question A. So far, the best answer to Question B was obtained by Yi^[5], as follows.

Theorem A There exists a set S with 7 elements such that E(S, f) = E(S, g) implies $f \equiv g$ for any pair of nonconstant entire functions f and g.

Later, many authors studied these questions for meromorphic functions. The present best answer to Question B for meromorphic functions was obtained by Frank and Reinders^[6]. They proved the following result.

Theorem B There exists a set S with 11 elements such that E(S, f) = E(S, g) implies $f \equiv g$ for any pair of nonconstant meromorphic functions f and g.

A natural problem arises: What can we say if nonconstant meromorphic functions f and g have "few" poles? In 1999, Fang *et al.*^{[7],[8]} proved the following theorem.

Theorem C Let $S = \{z : z^7 - z^6 = 1\}$. Suppose that f, g are two nonconstant meromorphic functions satisfying $\Theta(\infty, f) > \frac{11}{12}$, $\Theta(\infty, g) > \frac{11}{12}$. If E(S, f) = E(S, g) and $E(\infty, f) = E(\infty, g)$, then $f \equiv g$.

Recently, Zhang and Xu^[9] proved the following results.

Theorem D Let $S = \{z : z^7 - z^6 = 1\}$. Suppose that f, g are two nonconstant meromorphic functions satisfying $\Theta(\infty, f) + \Theta(\infty, g) > 1$. If E(S, f) = E(S, g) and $E(\infty, f) = E(\infty, g)$, then $f \equiv g$.

Theorem E Let $S = \{z : z^7 - z^6 = 1\}$. Suppose that f, g are two nonconstant meromorphic functions satisfying $\Theta(\infty, f) + \Theta(\infty, g) > \frac{4}{3}$. If E(S, f) = E(S, g) and