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1 Introduction

On the Euclidean space Rn, many important results for sublinear operators are obtained.

For example, Li and Yang[1] established the boundedness of some sublinear operators on

Herz-type spaces in 1996. And Lu and Xu[2] further studied the boundedness for sublinear

operators on Morray-Herz spaces in 2005.

However, some researches revealed that many classical results for sublinear operators

on Rn still hold on locally compact Vilenkin groups G. In 1998, Yang[3] replaced Rn by

a locally compact Vilenkin groups G and investigated the Lp(G)-boundedness of sublinear

operators with weaker conditions, which implies its Lp

|x|α(G)-boundedness. And Lu and

Yang[4] established the boundedness of some sublinear operators in weighted Herz spaces

over G. In 2001, Kitada and Yang[5] studied the boundedness of potential operators and the

maximal operators associated with them in the weighted Herz space over G. And recently,
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Wu[6] considered the boundedness of commutators on Morrey-Herz spaces MK̇α,λ
p,q (G). Mo-

tivated by [1]–[6], the main purpose of this paper is to further generalize the relative results

for theirs and establish some boundedness results of fractional and singular integral opera-

tors on MK̇α,λ
p,q (G). Before stating our main results, we first give some basic concepts and

definitions.

Throughout this paper, we denote by G a locally compact Abelian group containing a

strictly decreasing sequence of compact open subgroups {Gn}
∞
n=−∞ such that

(i)
∞
⋃

n=−∞
Gn = G and

∞
⋂

n=−∞
Gn = {0};

(ii) sup{order(Gn/Gn+1) : n ∈ Z} = B < ∞.

Let Γ denote the dual group of G, and Γn denote the annihilator of Gn for each n ∈ Z.

That is,

Γn = {γ ∈ Γ : γ(x) = 1, ∀x ∈ Gn}.

Then {Γn}
∞
n=−∞ is a strictly increasing sequence of compact open subgroups of Γ such that

(i)′
∞
⋃

n=−∞
Γn = Γ and

∞
⋂

n=−∞
Γn = {1};

(ii)′ order(Γn/Γn+1) = order(Gn/Gn+1).

We choose Haar measure dµ (or dx) on G and dγ on Γ so that

|G0| = |Γ0| = 1,

where |A| denotes the Haar measure of a measurable subset A of G, or Γ . Then

|Gn|
−1 = |Γn| ≡ mn, n ∈ Z.

Since 2mn ≤ mn+1 ≤ Bmn, n ∈ Z, it follows that for any a > 0, k ∈ Z,
∞
∑

n=k

(mn)−a ≤ C(mk)−a,
k

∑

n=−∞

(mn)a ≤ C(mk)a.

If we define the function d : G × G → R by

d(x, y) =

{

0, x − y = 0;

(mn)−1, x − y ∈ Gn\Gn+1,

then d defines a metric on G×G and the topology on G induced by this metric is the same

as the original topology on G. For x ∈ G, set

|x| = d(x, 0).

Then

|x| = (mn)−1 iff x ∈ Gn\Gn+1.

If I = x + Gn, we say I is a coset of G, where x ∈ G and n ∈ Z.

Examples of these groups are given in §4.1.2 of [7]. An additional example is the additive

group of a local field, see [8] for details. For more details, we refer to [9]–[12].

Here and in what follows, for any non-negative weight function ω, any measurable func-

tion f on G and any q ∈ (0,∞], we denote by Lq
ω(G) the Lebesgue space on G with respect

to the weight measure ω(x)dx. And we write

‖f‖L
q
ω(G) =

(

∫

G

|f(x)|qω(x)dx
)

1
q

with the usual modification when q = ∞. If ω ≡ 1, we denote Lq
ω(G) simply by Lq(G).


