On Centralizer Subalgebras of Group Algebras^{*}

LI ZHENG-XING AND HAI JIN-KE (School of Mathematics, Qingdao University, Qingdao, 266071)

Communicated by Du Xian-kun

Abstract: Let G be a finite group, $H \leq G$ and R be a commutative ring with an identity 1_R . Let $C_{RG}(H) = \{ \alpha \in RG | \alpha h = h\alpha \text{ for all } h \in H \}$, which is called the centralizer subalgebra of H in RG. Obviously, if H = G then $C_{RG}(H)$ is just the central subalgebra Z(RG) of RG. In this note, we show that the set of all Hconjugacy class sums of G forms an R-basis of $C_{RG}(H)$. Furthermore, let N be a normal subgroup of G and γ the natural epimorphism from G to $\overline{G} = G/N$. Then γ induces an epimorphism from RG to $R\overline{G}$, also denoted by γ . We also show that if R is a field of characteristic zero, then γ induces an epimorphism from $C_{RG}(H)$ to $C_{R\overline{G}}(\overline{H})$, that is, $\gamma(C_{RG}(H)) = C_{R\overline{G}}(\overline{H})$.

Key words: group ring, centralizer subalgebra, H-conjugacy class, H-conjugacy class sum

2000 MR subject classification: 20C15, 20C20. Document code: A

Article ID: 1674-5647(2011)03-0227-07

1 Introduction

Let G be a finite group and H a subgroup of G. We know that H acts on G by conjugation. With respect to this action, for any $g \in G$, the H-orbit $g^H = \{g^h \mid h \in H\}$ of G is called an H-conjugacy class of G containing g. We denote by $\operatorname{Cl}_H(G)$ the set of all H-conjugacy classes of G, namely,

$$\operatorname{Cl}_H(G) = \{ g^H \mid g \in G \}.$$

It is clear that G is a disjoint union of all $g^H \in \operatorname{Cl}_H(G)$. Let R be a commutative ring with an identity 1_R . Denote by RG the group algebra of G over R. Let

 $C_{RG}(H) = \{ \alpha \in RG \mid \alpha h = h\alpha \text{ for all } h \in H \},\$

which is obviously a subalgebra of RG and is called the centralizer subalgebra of H in RG. Note that if H = G then $C_{RG}(H)$ is just the central subalgebra Z(RG) of RG. For any

^{*}Received date: Sept. 4, 2009.

Foundation item: The NSF (11071155) of China and the NSF (2008A03) of Shandong Province.

 $g^H \in \operatorname{Cl}_H(G)$, write

$$\widehat{g^{H}} := \sum_{x \in g^{H}} x = \sum_{h \in H} g^{h} \in RG$$

the sum of all elements in g^H , which is called an *H*-conjugacy class sum of *G*. It is clear that if H = G then the *H*-conjugacy class sums of *G* are the class sums of *G* in ordinary sense. For general applications of the class sums of *G*, see [1]–[4]. It is well-known that the set of all the class sums of *G* forms an *R*-basis of Z(RG). As a generalization of this result, we show in this note that the set $\{\widehat{g^H} \mid g^H \in \operatorname{Cl}_H(G)\}$ of all the *H*-conjugacy class sums of *G* also forms an *R*-basis of $C_{RG}(H)$.

Let $N \leq G$ and write $\overline{G} = G/N$. Let

(

$$\gamma: G \to \bar{G}(g \mapsto \bar{g})$$

be the natural epimorphism of groups. By extending γ linearly to the group ring RG, we obtain an epimorphism of algebras. By abuse of notation, it is also denoted by γ , i.e.,

$$\gamma: RG \to R\bar{G}\Big(\sum_{g \in G} r_g g \mapsto \sum_{g \in G} r_g \bar{g}\Big)$$

Write $\overline{H} = HN/N$ for any $H \leq G$ and $\overline{g} = gN$ for any $g \in G$. Then $\overline{g}^{\overline{H}}, \overline{g}^{\overline{H}}, C_{R\overline{G}}(\overline{H})$ and $\operatorname{Cl}_{\overline{H}}(\overline{G})$ can be defined in the same way as $g^H, \widehat{g}^{\overline{H}}, C_{RG}(H)$ and $\operatorname{Cl}_H(G)$, respectively. It is obvious that $\gamma(C_G(H)) \subseteq C_{\overline{G}}(\overline{H})$. Furthermore, $\gamma(C_G(H)) = C_{\overline{G}}(\overline{H})$ provided that H is a p-subgroup of G with (|N|, p) = 1. Similarly, we have $\gamma(C_{RG}(H)) \subseteq C_{R\overline{G}}(\overline{H})$. Then a question arising naturally is under what condition(s) can we ensure that $\gamma(C_{RG}(H)) = C_{R\overline{G}}(\overline{H})$. In this note, we show that $\gamma(C_{RG}(H)) = C_{R\overline{G}}(\overline{H})$ provided that R is a field of characteristic zero. This is an amazing result since it has nothing to do with the orders of H and G/N. Our main result is as follows:

Theorem 1.1 Let G be a finite group, $H \leq G$ and $N \leq G$, and other notations be as above. Then the following hold:

(1) $C_{RG}(H)$ is a subalgebra of RG with the set $\{\widehat{g^H} \mid g^H \in Cl_H(G)\}$ of all H-conjugacy class sums as an R-basis;

(2) If R is a field of characteristic zero, then γ induces an epimorphism of algebras from $C_{RG}(H)$ to $C_{R\bar{G}}(\bar{H})$, that is, $\gamma(C_{RG}(H)) = C_{R\bar{G}}(\bar{H})$.

Henceforth all groups under consideration are finite. Other notations without specified explicitly is standard (refer to [5] and [6]).

2 Proof of the Theorem 1.1

For convenience, we restate and fix some notations used throughout this section.

R: a commutative ring with an identity 1_R ;

G: a finite group;

H: a subgroup of G;

N: a normal subgroup of G;