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Abstract: We consider the inverse problem of finding cavities within some object

from electrostatic measurements on the boundary. By a cavity we understand any

object with a different electrical conductivity from the background material of the

body. We give an algorithm for solving this inverse problem based on the output

nonlinear least-square formulation and the regularized Newton-type iteration. In

particular, we present a number of numerical results to highlight the potential and

the limitations of this method.
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1 Introduction

Electrical impedance tomography (EIT) is a technique to recover spatial properties of the

interior of a conducting object from electrostatic measurements taken on its boundary, an

important task in nondestructive testing. The problem has important applications in med-

ical imaging, geophysics and environmental sciences. The technology is rapidly advancing,

surveys include (see, e.g., [1]–[4]).

Avid mathematical interest in EIT originated by Calderón[5] in 1980, and its unique

solvability for isotropic, i.e., scalar, conductivities of a wide class was obtained in there

and higher space dimensions by Sylvester and Uhlmann[6] in 1987 and in two dimensions

by Nachman[7] in 1996. Recently, uniqueness in two dimensions was shown by Astala and

Päivärinta[8]. Currently, the sharpest results for three dimensions and higher is made by

Brown and Torres[9]. On the other hand, it is well known that the inverse problem of EIT

is not uniquely solvable without the isotropy assumption (see, e.g., [10]).

The reconstruction methods of EIT from boundary measurements, Calderón suggested

in a specific linearization method which assumes that the conductivity is close to a constant.
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Other examples of linearization-based algorithms include backprojection methods (see, e.g.,

[11]), moment methods (see, e.g., [12]), and one-step Newton methods (see, e.g., [13]). Algo-

rithms solving the full nonlinear problem have been iterative in nature, with the exception

of some other direct methods including layer-stripping (see, e.g., [14]), D-bar methods (see,

e.g., [15]), the Factorization method (see, e.g., [2]) and the probe method (see, e.g., [16])

together with their variants.

Unfortunately, the relationship between the boundary current-voltage data and the in-

ternal conductivity distribution bears a nonlinearity and low sensitivity, in mathematical

terms which means that EIT is an ill-posed problem. For this reason, it is important to

incorporate as much a priori knowledge about the object as possible, and this is the reason

why the cavity problem may be somewhat easier to approach and more likely to eventually

solve numerically. In the early 1990s, magnetic resonance electrical impedance tomography

(MREIT) was proposed to deal with the difficulties of EIT. The key idea of MREIT was

based on measuring magnetic flux density B by using a current-injection MRI technique,

and the inverse problem is divided into two categories: using current density J for image

reconstructions called J -based MREIT; and the other is Bz-based MREIT (see, e.g., [17]).

In this paper, we consider the cavity problem in EIT, i.e., we give an algorithm to de-

termine the shape of a cavity within the object from electrostatic measurements on the

boundary. It is organized as follows: in Section 2, we formulate the problem, and trans-

form the cavity problem into a nonlinear operator equation using coordinate transformation

and analytic continuation. Section 3 presents an iterative algorithm based on the output

nonlinear least-squares formulation and the regularized Newton-type method, and Section

4 contains several numerical examples and concluding remarks.

2 Mathematical Formulation of the Problem

We consider a simply connected domain

BR = {(x, y) | x2 + y2 < R2} ⊂ R
2

with boundary ∂BR. Assume that the object is homogeneous and conducting except for a

insulating cavity Ω , which is convex with boundary ∂Ω . And assume that there exists a

constant r0 > 0 satisfying

Br0
= {(x, y) | x2 + y2 ≤ r2

0} ⊂ Ω̄ ⊂ BR.

∂BR and ∂Ω are considered to be sufficient smooth with n being the outer (relative to

BR\Ω̄) unit normal vector.

There is a prescribed boundary current:

f ∈ L2
0(∂BR) =

{
f ∈ L2(∂BR) :

∫

∂BR

f(s)ds = 0
}
,

where

L2(∂BR) =
{
f(s) :

∫

∂BR

| f(s)|2ds < +∞
}
.

The corresponding boundary potential g ∈ L2
0(∂BR) can be measured without physical


