Continuous Selections and Fixed Points for ϕ -maps with Their Applications to Section Problems^{*}

PIAO YONG-JIE, JIN HAI-LAN AND PIAO GUANG-RI (Department of Mathematics, College of Science, Yanbian University, Yanji, Jilin, 133002)

Communicated by Lei Feng-chun

Abstract: The concept of finitely continuous topological space is introduced and the basic properties of the space are given. Several continuous selection theorems and fixed point theorems for ϕ -maps are established, and as applications of the above fixed point theorems, some section problems are discussed. The results generalize and improve many corresponding conclusions.

Key words: FC-space, FC-subset, ϕ -map, continuous selection, fixed point, section problem

2000 MR subject classification: 47H05, 47H10 **Document code:** A

Article ID: 1674-5647(2012)03-0225-10

1 Introduction and Preliminaries

Motivated by the well-known works of Horvath^[1-2], there have appeared many generalizations of a convex subset of a topological vector space. The most general one seems to be that of finitely continuous topological space or FC-space introduced by Ding^[3-4], which extends many topological spaces having generalized convexity structures.

Browder^[5-6] showed that any multimap with convex valued and open fibers from a Hausdorff compact space to a convex space has a continuous selection, and used this fact to obtain the famous Fan-Browder fixed point theorem. Later it was generalized and applied by many authors (see, for example, [7–12]).

The concept of ϕ -map was introduced by Hovarth^[2]. In recent years, it has been extended by many authors. Several continuous selections of ϕ -maps were obtained and some applications were given (see [12–14]).

In this paper, we introduce the concept of finitely continuous topological space (simply, FC-space), which was given by $\text{Ding}^{[3-4]}$, and define the concept of ϕ -map in FC-spaces, and

^{*}Received date: June 3, 2009. Foundation item: The NSF (10361005) of China.

obtain two basic properties of FC-spaces. And then, we establish some continuous selection theorems for ϕ -maps and give several fixed point theorems for composite of two ϕ -maps. Finally, we discuss the section problems as applications of the above fixed point theorems.

Definition 1.1 $(X, D; \{\Phi_N\})$ is called a finitely continuous topological space (simply, *FC*-space) if *D* is a nonempty subset of a topological space *X*, and for each $N = \{x_0, x_1, \dots, x_n\} \in \langle D \rangle$ (where some elements of *N* may be same), there exists a continuous map $\Phi_N : \Delta_n \to X$, where Δ_n is the standard *n*-simplex in \mathbb{R}^{n+1} .

Definition 1.2 Let $(X, D; \{\Phi_N\})$ be an FC-space, Y and Z be two subsets of X. Z is called an FC-subset of X relative to Y if for each $N = \{x_0, x_1, \dots, x_n\} \in \langle D \rangle$ (where some elements of N may be same) and each $J = \{x_{i_0}, x_{i_1}, \dots, x_{i_k}\} \subset N \cap Y$, $\Phi_N(\Delta_k) \subset Z$, where Δ_k is the face of Δ_n corresponding to J. If Z = Y, then Z is called an FC-subset of X.

Definition 1.3 Let X be a nonempty set, and $(Y, D; \{\Phi_N\})$ be an FC-space. $F: X \multimap Y$ is called a ϕ -map if there exists a map $S: X \multimap D$ (which is called the companion map of F) such that

(i) for each $x \in X$, F(x) is an FC-subset of Y relative to S(x);

(ii) $X = \bigcup \{ \operatorname{Int} S^{-}(y) : y \in D \}.$

Theorem 1.1 Let $\{(X_i, D_i; \{\Phi_{N_i}\})\}_{i \in I}$ be a family of FC-spaces. Then $(\prod_{i \in I} X_i, \prod_{i \in I} D_i; \{\Phi_N\})$ is also an FC-space, where $\Phi_N : \Delta_n \to \prod_{i \in I} X_i$ is defined by $\Phi_N(\alpha) = \prod_{i \in I} \Phi_{N_i}(\alpha)$ for each $\alpha \in \Delta_n$ with $N \in \langle \prod_{i \in I} D_i \rangle$ and $N_i = \pi_i(N)$.

Proof. Let

$$N = \{a_0, a_1, \cdots, a_n\} \in \langle \prod_{i \in I} D_i \rangle.$$

Then

$$N_i := \pi_i(N) = \{a_{0,i}, a_{1,i}, \cdots, a_{n,i}\} \in \langle D_i \rangle,$$

and N_i has n+1 elements for all $i \in I$. Hence there exists a continuous map $\Phi_{N_i} : \triangle_n \to X_i$ for each $i \in I$. Let $\Phi_N : \triangle_n \to \prod_{i \in I} X_i$ be defined by

$$\Phi_N(\alpha) = \prod_{i \in I} \Phi_{N_i}(\alpha), \qquad \alpha \in \Delta_n.$$

Clearly, Φ_N is continuous. Hence $(\prod_{i \in I} X_i, \prod_{i \in I} D_i; \{\Phi_N\})$ is an FC-space.

Theorem 1.2 Let $\{(X_i, D_i; \{\Phi_{N_i}\})\}_{i \in I}$ be an family of FC-spaces, and Z_i be an FC-subset of X_i relative to Y_i for each $i \in I$. Then $\prod_{i \in I} Z_i$ is an FC-subset of the FC-space $(\prod_{i \in I} X_i, \prod_{i \in I} D_i; \{\Phi_N\})$ relative $\prod_{i \in I} Y_i$, where $\Phi_N = \prod_{i \in I} \Phi_{N_i}$ is as that in Theorem 1.1.