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Abstract: In nonstandard enlargement, the separations are characterized by non-

standard analysis methods in [0, 1]-topological spaces. Firstly, the monads of fuzzy

point in [0, 1]-topological spaces are described with remote-neighborhoods in non-

standard enlarged model. Then the nonstandard characterizations of separations in

[0, 1]-topological space are given by the monads. At last, relations of these separations

are investigated.
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1 Introduction and Preliminary

Separations are very important and basic concepts in general topology (see [1]). They are

different from other notions, such as connectivity and compactness, which come from the

self-development of topology, not the generalization of real. In [0, 1]-topological spaces, fuzzy

separations are more difficult. Fuzzy separations initiated by Chang[2] without “point” in

1968. After fuzzy points were defined in [3], Wang[4] rebuilt the fuzzy separations with fuzzy

points and remote-neighborhoods.

In 1960s, Robinson[5] proposed nonstandard analysis methods, and then the methods

were used in many mathematical branches (see [6–8]), especially in topology (see [9–10]).

However, it was rarely used in fuzzy topology. In [11], the monads of three kinds of neigh-

borhood structures were defined, and some properties of these monads were discussed. In

[12], the nonstandard characterizations of Moore-Smith convergence, in [0, 1]-topological
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space, were shown. In the present, separations in [0, 1]-topological spaces are investigated

by nonstandard analysis methods.

In this paper, firstly, the monad of a fuzzy point in [0, 1]-topological spaces is described

with remote-neighborhoods in the nonstandard enlarged model. Then the nonstandard

characterizations of the separations in [0, 1]-topological space are shown by the monads. At

last, the relations of these separations are investigated. It enriches the nonstandard analysis

theory, and provides a new way to research [0, 1]-topology.

Now, we give some notions and conclusions in nonstandard analysis and [0, 1]-topology.

Let S be an infinite individual set. The superstructure V (S) on S is the union

V (S) =
⋃

k∈N0

Vk(S) = V0(S) ∪ V1(S) ∪ V2(S) ∪ · · · ,

where N0 = {0}∪N, N denotes the set of natural numbers, and Vk(S) are defined inductively

by

V0(S) = S, Vk(S) = Vk−1(S) ∪ 2Vk−1(S), k = 1, 2, · · · ,

where 2Y denotes the power set of Y .

Definition 1.1 Let V (S) be a superstructure on infinite individual set S. The super-

structre V (S) is called a nonstandard enlargement (or a nonstandard enlarged model) if

there exists a mapping ∗ : V (S) → V (S) such that the following conditions are satisfied:

(1) ∗(∅) = ∅;

(2) S ⊂ ∗S;

(3) Transfer principle holds, i.e.,

|= α ↔ ∗ |= ∗α,

where α is a bounded quantifier formula in language LV (S);

(4) Concurrent principle holds, i.e., for any concurrent relation r ∈ V (S), there is a

y ∈ V ( ∗S) such that

〈 ∗x, y〉 ∈ ∗r, x ∈ dom(r).

Throughtout this paper, let X be a classical set, R be the set of real numbers, V ( ∗S) be

a nonstandard enlargement, and X ∪ R ⊆ S. Thus,

X ∪ R ⊂ ∗(X ∪ R) = ∗X ∪ ∗R.

In fuzzy mathematics, a mapping A : X → [0, 1] is called a fuzzy set, and F(X) denotes

the collection of all fuzzy sets on X . Specially, a fuzzy set, which is only valued λ(> 0) at

x ∈ X and vanished at other points, is called a fuzzy point on X and denoted by xλ. B(X)

denotes the collection of all fuzzy points on X .

By transfer principle, we have that a mapping ∗A : ∗X → ∗[0, 1] is a ∗-fuzzy set, ∗F(X)

and ∗B(X) denote the collection of all ∗-fuzzy sets and ∗-fuzzy points, respectively.

Definition 1.2 A family δ ⊆ F(X) is called a [0, 1]-topology on X, and (X, δ) is said to

be a [0, 1]-topological space, if the following conditions are satisfied:

(1) 0X , 1X ∈ δ, where 0X and 1X denote the mapping 0X : X → {0} and 1X : X → {1},

respectively;


