Nonstandard Analysis Methods for Separations in [0, 1]-topological Spaces^{*}

MA CHUN-HUI¹ AND SHI YAN-WEI²

School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055)
(2. Department of Basic Courses, Xi'an Peihua University, Xi'an, 710125)

Communicated by Lei Feng-chun

Abstract: In nonstandard enlargement, the separations are characterized by nonstandard analysis methods in [0, 1]-topological spaces. Firstly, the monads of fuzzy point in [0, 1]-topological spaces are described with remote-neighborhoods in nonstandard enlarged model. Then the nonstandard characterizations of separations in [0, 1]-topological space are given by the monads. At last, relations of these separations are investigated.

Key words: nonstandard enlargement, fuzzy point, [0, 1]-topological space, remoteneighborhood, monad

2000 MR subject classification: 03H05, 54J05 **Document code:** A **Article ID:** 1674-5647(2012)03-0275-06

1 Introduction and Preliminary

Separations are very important and basic concepts in general topology (see [1]). They are different from other notions, such as connectivity and compactness, which come from the self-development of topology, not the generalization of real. In [0, 1]-topological spaces, fuzzy separations are more difficult. Fuzzy separations initiated by Chang^[2] without "point" in 1968. After fuzzy points were defined in [3], Wang^[4] rebuilt the fuzzy separations with fuzzy points and remote-neighborhoods.

In 1960s, Robinson^[5] proposed nonstandard analysis methods, and then the methods were used in many mathematical branches (see [6–8]), especially in topology (see [9–10]). However, it was rarely used in fuzzy topology. In [11], the monads of three kinds of neighborhood structures were defined, and some properties of these monads were discussed. In [12], the nonstandard characterizations of Moore-Smith convergence, in [0, 1]-topological

^{*}Received date: Oct. 30, 2010.

Foundation item: The NSF (2007A12) of Shaanxi Province and the Special Science Research Project (11JK0507) of Shaanxi Provincial Department of Education.

space, were shown. In the present, separations in [0, 1]-topological spaces are investigated by nonstandard analysis methods.

In this paper, firstly, the monad of a fuzzy point in [0, 1]-topological spaces is described with remote-neighborhoods in the nonstandard enlarged model. Then the nonstandard characterizations of the separations in [0, 1]-topological space are shown by the monads. At last, the relations of these separations are investigated. It enriches the nonstandard analysis theory, and provides a new way to research [0, 1]-topology.

Now, we give some notions and conclusions in nonstandard analysis and [0, 1]-topology. Let S be an infinite individual set. The superstructure V(S) on S is the union

$$V(S) = \bigcup_{k \in \mathbf{N}_0} V_k(S) = V_0(S) \cup V_1(S) \cup V_2(S) \cup \cdots,$$

where $\mathbf{N}_0 = \{0\} \cup \mathbf{N}$, \mathbf{N} denotes the set of natural numbers, and $V_k(S)$ are defined inductively by

$$V_0(S) = S,$$
 $V_k(S) = V_{k-1}(S) \cup 2^{V_{k-1}(S)},$ $k = 1, 2, \cdots,$

where 2^{Y} denotes the power set of Y.

Definition 1.1 Let V(S) be a superstructure on infinite individual set S. The superstructre V(S) is called a nonstandard enlargement (or a nonstandard enlarged model) if there exists a mapping $*: V(S) \to V(S)$ such that the following conditions are satisfied:

(1) $^{*}(\emptyset) = \emptyset;$

(2) $S \subset {}^*S;$

(3) Transfer principle holds, i.e.,

$$\models \alpha \quad \leftrightarrow \quad * \models *\alpha,$$

where α is a bounded quantifier formula in language $\mathcal{L}_{V(S)}$;

(4) Concurrent principle holds, i.e., for any concurrent relation $r \in V(S)$, there is a $y \in V({}^{*}S)$ such that

$$\langle x, y \rangle \in r, \quad x \in \operatorname{dom}(r).$$

Throughtout this paper, let X be a classical set, **R** be the set of real numbers, V(*S) be a nonstandard enlargement, and $X \cup \mathbf{R} \subseteq S$. Thus,

$$X \cup \mathbf{R} \subset {}^{*}\!(X \cup \mathbf{R}) = {}^{*}\!X \cup {}^{*}\!\mathbf{R}.$$

In fuzzy mathematics, a mapping $A: X \to [0, 1]$ is called a fuzzy set, and $\mathcal{F}(X)$ denotes the collection of all fuzzy sets on X. Specially, a fuzzy set, which is only valued $\lambda(>0)$ at $x \in X$ and vanished at other points, is called a fuzzy point on X and denoted by x_{λ} . B(X)denotes the collection of all fuzzy points on X.

By transfer principle, we have that a mapping $^*A : ^*X \to ^*[0, 1]$ is a *-fuzzy set, $^*\mathcal{F}(X)$ and $^*B(X)$ denote the collection of all *-fuzzy sets and *-fuzzy points, respectively.

Definition 1.2 A family $\delta \subseteq \mathcal{F}(X)$ is called a [0,1]-topology on X, and (X,δ) is said to be a [0,1]-topological space, if the following conditions are satisfied:

(1) 0_X , $1_X \in \delta$, where 0_X and 1_X denote the mapping $0_X : X \to \{0\}$ and $1_X : X \to \{1\}$, respectively;