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Abstract: For differential equations with piecewise constant arguments of advanced

type, numerical stability and oscillations of Runge-Kutta methods are investigated.

The necessary and sufficient conditions under which the numerical stability region

contains the analytic stability region are given. The conditions of oscillations for the

Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods

preserve the oscillations of the analytic solution. Moreover, the relationship between

stability and oscillations is discussed. Several numerical examples which confirm the

results of our analysis are presented.
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1 Introduction

In this paper, we consider the differential equations with piecewise constant arguments

(EPCA) of advanced type, given by{
u′(t) = au(t) + bu([t+ 1]), t ≥ 0,

u(0) = u0,
(1.1)
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where a, b, u0 are real constants and [ · ] denotes the greatest integer function. The general

form of (1.1) is {
u′(t) = f(t, u(t), u(α(t))), t ≥ 0,

u(0) = u0,
(1.2)

where the argument α(t) has intervals of constancy.

The theory of EPCA was initiated in [1–3]. In the literature, there are many papers

dealing with the properties of EPCA, such as Wiener and Cooke[4], Xia et al.[5], Muroya[6]

and Akhmet[7]. Significant parts of pioneer results for EPCA can be found in [8]. For more

details of EPCA, the reader can see [9–11] and the references therein.

In recent years, much research focused on the numerical solutions of EPCA. The stability

and the oscillations of numerical solutions of EPCA was investigated in [12–16]. As far as

we know, very few results were obtained on combining the stability with the oscillations

of the numerical solutions in the paper except for [17]. Different from [17], the novel idea

of our paper is that we study both stability and oscillations of the numerical solutions by

using the Runge-Kutta methods for the problem (1.1), and their relationships are analyzed

quantitatively.

2 Preliminaries

In this section, we introduce some definitions and theorems which are useful for our paper.

Definition 2.1 [8] A solution of the problem (1.1) on [0,∞) is a function u(t) which

satisfies the conditions:

(i) u(t) is continuous on [0,∞);

(ii) The derivative u′(t) exists at each point t ∈ [0,∞) with the possible exception of the

points [t] ∈ [0,∞), where one-sided derivatives exist;

(iii) (1.1) is satisfied on each interval [n, n+ 1) ⊂ [0,∞) with integral end-points.

Theorem 2.1 [8] If b ̸= a

ea − 1
, then the problem (1.1) has a unique solution on [0,∞)

u(t) = (m0({t}) + λm1({t}))λ[t]u0, (2.1)

where {t} is the fractional part of t and

m0(t) = eat, m1(t) = (eat − 1)a−1b, λ =
b0

1− b1
, b0 = m0(1), b1 = m1(1).

Theorem 2.2 [8] The solution of the problem (1.1) is asymptotically stable for all u0, if

and only if

(a+ b)

(
b− a(ea + 1)

ea − 1

)
> 0. (2.2)

Definition 2.2 A non-trivial solution of the problem (1.1) is said to be oscillatory if there

exists a sequence {tk}∞k=1 such that tk → ∞ as k → ∞ and u(tk)u(tk−1) < 0, otherwise, it

is called non-oscillatory. We say that the problem (1.1) is oscillatory if all the non-trivial

solutions of (1.1) are oscillatory. We say that the problem (1.1) is non-oscillatory if all the

non-trivial solutions of (1.1) are non-oscillatory.


