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Abstract: Let Hn be an orientable handlebody of genus n. It has been proved that

for n not less than 2, there exists an annulus-busting curve in ∂Hn. In the present

paper, we prove that for n not less than 2, there exists an essential simple closed

curve C in ∂Hn which intersects each essential planar surface in Hn non-emptily.

Furthermore, we show that for n not less than 3, a pants-busting curve must also be

an annulus-busting curve.
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1 Introduction

Let Hn be an orientable handlebody of genus n. A planar surface in Hn is a 2-sphere with

some holes. The relation between planar surfaces and thin positions is considered in [1–2].

Rubinstein and Scharlemann[3] considered the maximal essential annuli in H2. Lei and

Tang[4] detected the maximal essential annuli in Hn (n ≥ 2). It is a result in [5] that for

each n ≥ 2, there exists an essential simple closed curve C on the boundary of Hn such

that C intersects every essential annulus in Hn non-emptily. This curve C is called an

annulus-busting curve.

In the present paper, we show the existence of planar-busting curves. Namely, for each

n ≥ 2, there exists an essential simple closed curve C on the boundary of Hn such that
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C intersects every essential planar surface in Hn non-emptily. Furthermore, we show that

under some conditions, a pants-busting curve is also an annulus-busting curve.

In Section 2, we show some useful propositions, and we use them to prove the main

results in Sections 3 and 4.

All the manifolds considered in the paper are assumed to be compact, orientable and

connected. The definitions and terminologies not defined here are standard; see, for example,

[6–7].

2 Preliminaries

Let Hn be an orientable handlebody of genus n. A connected properly embedded surface P

in Hn is essential if P is incompressible and is not boundary parallel in Hn.

Definition 2.1 Let Hn be a handlebody of genus n. An essential simple closed curve C

in ∂Hn which intersects each essential pair of pants (annulus) in Hn non-emptily is called

a pants-busting (annulus-busting) curve. An essential simple closed curve C in ∂Hn which

intersects each essential planar surface in Hn non-emptily is called a planar-busting curve.

From a result of Schultens[8], it is easy to see the following proposition.

Proposition 2.1 Let Hn be a handlebody with genus n ≥ 2, and P be an essential pla-

nar surface in Hn. Then the manifold obtained from cutting Hn open along P may be a

handlebody or consist of two handlebodies.

Let S be a closed orientable surface, α0, α1, · · · , αn be a sequence of essential simple

closed curves in S such that for each 1 ≤ i ≤ n, αi−1 and αi can be isotoped to be disjoint.

Then we say that the sequence is a path of length n.

The distance d(α, β) between a pair α, β of essential simple closed curves in S is the

smallest integer n such that there is a path from α to β of length n. Let M = V1

∪
S V2 be

a Heegaard splitting of a 3-manifold M .

Denote by d(S) the distance of the Heegaard splitting which is defined as

d(S) = min{d(C1, C2) | Ci bounds an essential disk in Vi, i = 1, 2}.
It is clear that V1

∪
S V2 is reducible if and only if d(S) = 0, and V1

∪
S V2 is weakly

reducible if and only if d(S) ≤ 1.

The following theorem of Hempel[9] is important for proving our main theorem.

Theorem 2.1 [9] For positive integers m,n ≥ 2, there exists a Heegaard splitting V1

∪
S V2

of genus n for a closed orientable 3-manifold M with the distance d(S) > m.

For convenience, we give the following definition and we will use it later.

Definition 2.2 Let Hn (n ≥ 2) be a handlebody of genus n, A be an essential annulus in

Hn, and ∂A = a
∪
b. Let α be a simple arc in ∂Hn with α

∩
A = α

∩
a = ∂α (or α

∩
A =


