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Abstract: In this paper, we present and analyze a family of fifth-order iterative

methods free from second derivative for solving nonlinear equations. It is established

that the family of iterative methods has convergence order five. Numerical examples

show that the new methods are comparable with the well known existing methods

and give better results in many aspects.
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1 Introduction

In this paper, we consider the iterative methods to find a simple root α of a nonlinear

equation

f(x) = 0. (1.1)

i.e., f(α) = 0 and f ′(α) ̸= 0, where f : I ⊂ R → R for an open interval I is a scalar function.

Newton’s method is an important and basic approach for solving nonlinear equations (see

[1]), and its formulation is given by

xn+1 = xn − f(xn)

f ′(xn)
. (1.2)

This method converges quadratically. To increase the order of convergence of the iterative

methods, many authors have developed new methods (see [2–11]).

A two-step predictor-corrector Householder method (see [12]) is given by

yn = xn − f(xn)

f ′(xn)
, (1.3)
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xn+1 = yn − f(yn)

f ′(yn)
− f2(yn)f

′′(yn)

2f ′3(yn)
. (1.4)

It is observed that the method depends on second derivative, so its practical utility is

restricted rigorously. Therefore, it is important and interesting to develop iterative methods

which are free from second derivative and whose order is higher if possible. This is main

motivation of this paper.

2 Development of Methods and Convergence Analysis

Let us consider approximating the equation (1.1) around the point (xn, f(xn)) by the

equation

g(x) = ax3 + bx2 + cx+ d. (2.1)

We impose the condition

g′′(xn) = f ′′(xn) (2.2)

on (2.1). From (2.1)-(2.2) we get the value of b easily determined in terms of a:

2b = f ′′(xn)− 6axn. (2.3)

Then

g′′(x) = 6ax+ f ′′(xn)− 6axn. (2.4)

By (1.3) and (2.4), we have

f ′′(yn) ≈ g′′(yn) = f ′′(xn)−
6af(xn)

f ′(xn)
. (2.5)

We consider

f ′′(xn) ≃
f ′(yn)− f ′(xn)

yn − xn
. (2.6)

Combining (1.3)-(1.4) and (2.5)-(2.6), we obtain the following new family iterative method

for solving (1.1).

Algorithm 2.1

yn = xn − f(xn)

f ′(xn)
, (2.7)

xn+1 = yn − f(yn)

f ′(yn)
− f2(yn)(f

′3(xn)− f ′(yn)f
′2(xn)− µf2(xn))

2f ′3(yn)f ′(xn)f(xn)
. (2.8)

Theorem 2.1 Let α ∈ I be a simple zero of sufficiently differentiable function f : I ⊂
R → R for an open interval I. If x0 is sufficiently close to α, then Algorithm 2.1 has

fifth-order convergence.

Proof. Let

en = xn − α, ck =
1

k!
· f

(k)(α)

f ′(α)
.

We use Taylor expansions as follows:

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n +O(e7n)], (2.9)


