Principal Quasi-Baerness of Rings of Skew Generalized Power Series

ZHANG WAN-RU

(Department of Mathematics, Hexi University, Zhangye, Gansu, 734000)

Communicated by Du Xian-kun

Abstract: Let R be a ring and (S, \leq) be a strictly totally ordered monoid satisfying that $0 \leq s$ for all $s \in S$. It is shown that if λ is a weakly rigid homomorphism, then the skew generalized power series ring $[[R^{S,\leq}, \lambda]]$ is right p.q.-Baer if and only if Ris right p.q.-Baer and any S-indexed subset of $S_r(R)$ has a generalized join in $S_r(R)$. Several known results follow as consequences of our results.

Key words: rings of skew generalized power series, right p.q.-Baer ring, weakly rigid endomorphism

2000 MR subject classification: 16W60, 16S50

Document code: A

Article ID: 1674-5647(2013)04-0335-10

1 Introduction

Throughout this paper, R denotes an associative ring with unity. Recall that R is (quasi-) Baer if the right annihilator of every nonempty subset (every right ideal) of R is generated by an idempotent. In [1] Kaplansky introduced Baer rings to abstract various properties of AW^* -algebras and Von Neumann algebras. Clark defined quasi-Baer rings in [2] and used them to characterize when a finite dimensional algebra with unity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. Further work on Baer and quasi-Baer rings appears in [3–6]. As a generalization of quasi-Baer rings, Birkenmeier, Kim and Park in [7] introduced the concept of principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of every principal right ideal of R is generated by an idempotent. Similarly, left p.q.-Baer rings can be defined. A ring is called p.q.-Baer if it is both right and left p.q.-Baer. For more details and examples of right p.q.-Baer rings, see [8–13].

It was proved that a ring R is quasi-Baer if and only if R[X] is quasi-Baer if and only

Received date: Jan. 10, 2011.

Foundation item: The Youth Foundation (QN2012-14) of Hexi University.

E-mail address: zhangwru@163.com (Zhang W R).

if R[[X]] is quasi-Baer, where X is an arbitrary nonempty set of not necessarily commuting indeterminates (see [3], Theorem 1.8). Birkenmeier *et al.*^[8] showed that R is right p.g.-Baer if and only if R[x] is right p.q.-Baer (see [8], Theorem 2.1), and an example ([8], Example 2.6) was given to show that the result is not true for R[[x]]. In [10], a necessary and sufficient condition was given for some rings under which the ring R[[x]] is right p.q.-Baer (see [10], Theorem 3). It is shown that for a ring R with $\mathcal{S}_{\ell}(R) \subseteq C(R), R[[x]]$ is right p.q.-Baer if and only if R is right p.q.-Baer and any countable family of idempotents in R has a generalized join in I(R), where I(R) is the set of all idempotents of R. In [11, 12], the author generalized the result to skew power series ring $R[[x; \alpha]]$ and generalized power series ring $[[R^{S,\leq}]]$. Cheng and Huang pointed out (see [9], Theorem 5) that the condition requiring all left semicentral idempotents being central is redundant in Theorem 3 of [10]. It is shown that R[[x]] is right p.q.-Baer if and only if R is right p.q.-Baer and any countable subset of right semicentral idempotents has a generalized countable join. This properly generalized the result in [10], Theorem 3. Inspired by the results above, in this paper we investigate the principal quasi-Baerness of skew generalized power series rings. Let R be a ring, (S, \leq) be a strictly totally ordered monoid such that $0 \leq s$ for all $s \in S$. It is shown that if λ is a weakly rigid homomorphism, then the skew generalized power series ring $[[R^{S,\leq},\lambda]]$ is right p.q.-Baer if and only if R is right p.q.-Baer and any S-indexed subset of $S_r(R)$ has a generalized join in $\mathcal{S}_r(R)$. This generalize the results such as Theorem 5 in [11], Theorem 2.1 in [12], Theorem 5 in [9] and Theorem 4 in [13].

For a nonempty subset Y of R, $r_R(Y)$ denotes the right annihilator of Y in R. Let C(R) be the set of all central elements of R.

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S is denoted additively, and the neutral element is denoted by 0. The following definition is due to [14, 15].

Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s', t \in S$ and s < s', then s + t < s' + t), and R a ring. Let $[[R^{S,\leq}]]$ be the set of all maps $f : S \to R$ such that $\operatorname{supp}(f) = \{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, $[[R^{S,\leq}]]$ is an abelian additive group. For every $s \in S$ and $f, g \in [[R^{S,\leq}]]$, let

$$X_s(f,g) = \{(u,v) \in S \times S \mid s = u + v, \ f(u) \neq 0, \ g(v) \neq 0\}.$$

It follows from [16] that $X_s(f,g)$ is finite. Denote by $\operatorname{End}(R)$ the set of all ring homomorphisms from R to R. Let $\lambda: S \to \operatorname{End}(R)$ be a map satisfying the following condition:

$$\lambda(u+v) = \lambda(u)\lambda(v), \qquad u, v \in S.$$

For any $s \in S$ and $f, g \in [[R^{S,\leq}]]$, define $fg: S \to R$ via $(fg)(s) = \sum_{(u,v) \in X_s(f,g)} f(u)\lambda(u)(g(v)).$

With the addition and the multiplication as above, $([[R^{S,\leq}]], +, \cdot)$ becomes a ring, which we denote by $[[R^{S,\leq}, \lambda]]$, and call it the skew generalized power series ring related to λ . The