Annulus and Disk Complex Is Contractible and Quasi-convex

GUO QI-LONG¹, QIU RUI-FENG², ZOU YAN-QING¹ AND ZHANG FA-ZE¹
 (1. School of Mathematics Sciences, Dalian University of Technology, Dalian, Liaoning, 116023)
 (2. Department of Mathematics, East China Normal University, Shanghai, 200062)

Communicated by Lei Feng-chun

Abstract: The annulus and disk complex is defined and researched. Especially, we prove that this complex is contractible and quasi-convex in the curve complex.
Key words: annulus and disk complex, contractible, quasi-convex
2000 MR subject classification: 57M99
Document code: A
Article ID: 1674-5647(2013)04-0377-06

1 Introduction

Let S be a closed orientable surface with genus at least 2. Harvey^[1] defined the curve complex of S as follows. The curve complex of S is the complex whose vertices are the isotopy classes of essential simple closed curves on S, and k+1 vertices in the curve complex span a k-simplex if they are represented by pairwise disjoint curves. We denote the curve complex of S by $\mathcal{C}(S)$. Harer^[2] proved that $\mathcal{C}(S)$ is homotopy equivalent to a bouquet of spheres of dimension $-\chi(S)$.

If S is a boundary component of an irreducible 3-manifold M, then we can define the disk complex $\Delta(M, S)$ as in [3]. A vertex of $\Delta(M, S)$ is an isotopy class of an essential curve in S which bounds a disk in M. As in the definition of $\mathcal{C}(S)$, k+1 vertices in $\Delta(M, S)$ span a k-simplex if they are represented by pairwise disjoint curves. It is easy to see that $\Delta(M, S)$ is a subcomplex of $\mathcal{C}(S)$. McCullough^[3] researched this complex and proved that it is contractible.

In Section 2, we define a new complex associated to a compression body as a generalization of both curve complex and disk complex of a handlebody. For a compression body C, we denote this new complex by $\mathcal{AD}(C)$ and call it annulus and disk complex. By using the techniques in [3], we prove the following theorem:

Received date: April 6, 2012.

Foundation item: The NSF (10901029) of China.

E-mail address: guoqilong1984@hotmail.com (Guo Q L).

A metric space (X, d) is geodesic, if for any pair of points there is a path connecting them which is a geodesic; and a subset Y of (X, d) is K-quasi-convex if for any pair of points in Y, any geodesic in X connecting them lies in a K-neighborhood of Y. A result in [4] implies that $\Delta(M, S)$ is quasi-convex in $\mathcal{C}(S)$. By the aid of their results, we prove

Theorem 1.2 $\mathcal{AD}(C)$ is K-quasi-convex in $\mathcal{C}(S)$, where K depends only on the genus of S.

2 Preliminaries

Definition 2.1 A compression body C is a 3-manifold obtained from an orientable connected closed surface Σ by attaching 2-handles to $\Sigma \times \{1\} \subset \Sigma \times [0, 1]$ and 3-balls to 2-sphere boundaries thereby created. We write

 $\partial_+ C = \Sigma \times \{0\}, \qquad \partial_- C = \partial C - \partial_+ C.$

When $C = \Sigma \times [0, 1]$, we say that C is a trivial compression body. When $\partial_{-}C = \emptyset$, we say that C is a handlebody.

Remark 2.1 If F is an essential annulus properly embedded in a compression body C, then this annulus must have one boundary component in ∂_+C as the other boundary component in ∂_-C . Furthermore, if F_1 and F_2 are two essential annuli such that $F_1 \bigcap \partial_+C$ is isotopic to $F_2 \bigcap \partial_+C$ in ∂_+C , then F_1 is isotopic to F_2 in C.

Essential annuli play an important role in the following definition.

Definition 2.2 For a compression body C, the annulus and disk complex $\mathcal{AD}(C)$ is defined as follows: A vertex of $\mathcal{AD}(C)$ is an isotopy class of an essential curve on ∂_+C which bounds an essential disk in C or cobounds an essential annulus in C with another curve in ∂_-C . k+1 vertices determine an k-simplex if and only if they can be represented by pairwise disjoint curves.

Remark 2.2 If C is a trivial compression body, then $\mathcal{AD}(C)$ is nothing but the curve complex $\mathcal{C}(\partial_+C)$. If C is a handlebody, then $\mathcal{AD}(C)$ is the disk complex $\Delta(C, \partial_+C)$.

Then we define another complex associated to a compression body C without concerning $\partial_+ C$.

Definition 2.3 For a compression body C, the complex $\mathcal{AD}(C)$ is defined as follows: A vertex of $\widetilde{\mathcal{AD}}(C)$ is an isotopy class of an essential disk in C or an essential annulus in C. k+1 vertices $[F_0], \dots, [F_k]$ determine an k-simplex if and only if we can isotopy F_0, \dots, F_k so that they are mutually disjoint.

In fact, $\mathcal{AD}(C)$ and $\mathcal{AD}(C)$ are isomophic.