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Abstract: In this paper, the generalized extended tanh-function method is used for

constructing the traveling wave solutions of nonlinear evolution equations. We choose

Fisher’s equation, the nonlinear schrödinger equation to illustrate the validity and ad-

vantages of the method. Many new and more general traveling wave solutions are

obtained. Furthermore, this method can also be applied to other nonlinear equations

in physics.
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1 Introduction

It is well known that the nonlinear phenomena is very important in variety of the scien-

tific fields, especially in fluid mechanics, solid state physics, plasma physics, plasma waves,

capillary-gravity waves and chemical physics. Most of these phenomena are described by the

nonlinear partial differential equations. So exact solutions of the nonlinear partial differen-

tial equations play an essential role in the nonlinear science. For this end, various methods,
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such as the inverse scattering method (see [1]), the Hirota’s bilinear technique (see [2]),

and truncated Painlv́e expansion (see [3]) have been developed to obtain exact solutions.

The tanh method presented by Malfliet[4–6] is a powerful solution method to get the exact

traveling wave solutions. Later, Fan et al.[7–8] proposed an extended tanh-function method

and obtained the new traveling wave solutions which cannot be obtained by tanh-function

method. Recently, El-Wakil and Abdou[9] modified the extended tanh-function method and

obtained some new exact solutions. In this paper, we extended the modified tanh-function

method to get the new exact traveling wave solutions. For illustration, we apply this method

to Fisher’s equation and the nonlinear Schrödinger equation with general nonlinearity.

2 The Generalized Extend tanh-function Method

In this section, we give a brief description of the generalized extended tanh method. Consider

the following nonlinear partial differential equation (PDE):

F (u, ut, ux, utt, uxt, uuu, · · · ) = 0, (2.1)

where u = u(t, x) is an unknown function, F is a polynomial in u = u(t, x) and its various

partial derivatives, in which the highest order derivatives and nonlinear terms are involved.

We first consider the traveling wave solutions of (2.1)

u(t, x) = U(ξ), ξ = λ(x− V t),

and reduce (2.1) into the following ordinary differential equation (ODE):

F (U, −λV U ′, λU ′, V 2U ′′, −λV U ′′, λ2U ′′, · · · ) = 0, (2.2)

where U ′ =
dU

dξ
. The solutions can be expressed as the polynomial form

U(ξ) = S(Y (ξ)) =

M∑
k=0

akY
k, (2.3)

where the positive integer M can be determined by balancing the highest order derivative

term with the nonlinear terms in (2.2), and Y is the solution of the Riccati equation

Y ′ = Y 2 + αY + b, (2.4)

where α and b are constants to be determined. Substituting (2.3) and (2.4) into (2.2) and

equating the coefficients of all powers Y k to zero yield a system of algebraic equations for

V , λ, a0, ai (i = 1, 2, · · · ), from which the constants are obtained explicitly.

The Riccati equation (2.4) has general solutions as follows:

(I) If α = 0 and b = −1, then

Y = − tanh(−ξ) or − coth(−ξ). (2.5)

This method is the traditional tanh method (see [4–6]).

(II) If α = 0 and b is an arbitrary constant, then

Y =


−
√
−b tanh(−

√
−bξ) or −

√
−b coth(−

√
−bξ), b < 0;

−1

ξ
, b = 0;

√
b tan(

√
bξ) or

√
b cot(

√
bξ), b > 0.

(2.6)


