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Abstract: This paper deals with a heat system coupled via local and localized sources

subject to null Dirichlet boundary conditions. In a previous paper of the authors, a

complete result on the multiple blow-up rates was obtained. In the present paper, we

continue to consider the blow-up sets to the system via a complete classification for

the nonlinear parameters. That is the discussion on single point versus total blow-up

of the solutions. It is mentioned that due to the influence of the localized sources,

there is some substantial difficulty to be overcomed there to deal with the single point

blow-up of the solutions.
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1 Introduction

This paper considers the following heat system coupled via local and localized sources:




ut = ∆u+ vp1 + vq1(0, t), (x, t) ∈ B × (0, T ),

vt = ∆v + up2 + uq2(0, t), (x, t) ∈ B × (0, T ),

u = v = 0, (x, t) ∈ ∂B × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ B̄,

(1.1)
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where B = {x ∈ RN : |x| < 1}, p1, p2 > 1, q1, q2 > 0, the radial initial data u0,v0∈
C2(B) ∩C(B̄) satisfy

(A)

{
u0 = u0(r), v0 = v0(r), u0, v0 ≥ 0, u0(0), v0(0) > 1,

u0(1) = v0(1) = 0, u0r, v0r < 0 for r ∈ (0, 1],

and

(B)

{
∆u0 + v

p1

0 + v
q1
0 (0) ≥ ηϕ0(v

p1

0 + v
q1
0 (0), x ∈ B̄,

∆v0 + u
p2

0 + u
q2
0 (0) ≥ ηϕ0(u

p2

0 + u
q2
0 (0)), x ∈ B̄,

where η ∈
(
0,

1

2

]
, λ0 and ϕ0 ∈ C2(B) ∩ C(B̄) are the first eigenvalue and eigenfunction,

respectively, of
{

∆ϕ+ λϕ = 0 in B,

ϕ = 0 on ∂B
(1.2)

normalized by ϕ0 > 0 in B and ‖ϕ0‖∞ = 1. Obviously, ϕ0 is a radially symmetric function

with ϕ′
0 < 0 for r ∈ (0, 1]. Such u0 and v0 do exist indeed (see [1–2]).

The theory of parabolic equations insures that there exists a unique local solution to

(1.1), which blows up in finite time for large initial data, (see, e.g., [3–5]). Let T be the

maximum existence time of the solution.

The system (1.1) is a combination of the following two coupled problems: with local

coupling

ut = ∆u+ vp1 , vt = ∆v + up2 , (x, t) ∈ Ω × (0, T ), (1.3)

and with localized coupling

ut = ∆u + vq1(0, t), vt = ∆v + uq2(0, t), (x, t) ∈ Ω × (0, T ), (1.4)

subject to null Dirichlet boundary conditions, where Ω is a bounded domain.

It is well known that the blow-up solutions of (1.3) with p1p2 > 1 must be single point

blow-up (see [5–7]). In [5] the single point blow-up result was proved for n = 1 with a very

restrictive condition of p1 = p2. This restriction of p1 = p2 was removed by Souplet[7],

which is a substantially improvement for the single blow-up discussion. On the other hand,

we know that the blow-up occurs everywhere in Ω = B for (1.4) with q1q2 > 1 (see [8]).

Naturally, both total and single point blow-up may be possible for (1.1).

The total versus single point blow-up for the scalar equation with both local and localized

sources

ut = ∆u+ up(x, t) + uq(x∗, t), (x, t) ∈ B × (0, T )

was well studied by Okada et al.[9–10] As for system, little is known concerning the total and

single point blow-up (see [1, 11]).

This paper is arranged as follows: The next section gives the multiple blow-up rate

results obtained in [12] as the preliminaries of the paper. Sections 3 and 4 are devoted to

the discussion on total and single point blow-up, respectively.


