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Abstract: In this paper, the λ-central BMO estimates for higher order commuta-

tors of Hardy operators on central Morrey space Lq,λ(Rn) are established. In the

meanwhile, the corresponding corollary for central BMO estimates is also obtained.
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1 Introduction and Main Result

Let f be a locally integrable function onRn. The n-dimensional Hardy operators are defined

by

H (f)(x) , 1

|x|n

∫
|t|<|x|

f(t)dt,

H ∗(f)(x) ,
∫
|t|≥|x|

f(t)

|t|n
dt, x ∈ Rn \ {0}.

In 1995, Christ and Grafakos[1] obtained results for the boundedness of H on Lp(Rn) (1 <

p < ∞) spaces. They also found the exact operator norms of H on Lp(Rn) (1 < p < ∞)

spaces.
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It is easy to see that H and H ∗ satisfy∫
Rn

g(x)H (f)(x)dx =

∫
Rn

f(x)H ∗(g)(x)dx.

And we have |H (f)(x)| ≤ CnMf(x), where M is the Hardy-Littlewood maximal operator

which is defined by

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(t)|dt,

where the supremum is taken over all balls containing x.

In 2007, Fu et al.[2] gave the central BMO estimates for commutators, Hb(f) and H ∗
b (f),

of n-dimensional Hardy operators, where b is a locally integrable function on Rn, Hb(f)

and H ∗
b (f) are defined as follows:

Hb(f) , bH (f)− H (bf), H ∗
b (f) , bH ∗(f)− H ∗(bf).

In 2000, Alvarez et al.[3] studied the relationship between central BMO spaces and Morrey

spaces. Furthermore, they introduced λ-central bounded mean oscillation spaces and central

Morrey spaces, respectively.

Definition 1.1 [3–4] (λ-central BMO space) Let 1 < q < ∞ and −1

q
< λ <

1

n
. A

function f ∈ Lq
loc(R

n) is said to belong to the λ-central bounded mean oscillation space

CBMOq,λ(Rn), if

∥f∥CBMOq,λ(Rn) = sup
r>0

{ 1

|B(0, r)|1+λq

∫
B(0, r)

|f(x)− fB |qdx
} 1

q

< ∞, (1.1)

where

B(0, r) = {x ∈ Rn : |x| < r}, fB = |B(0, r)|−1

∫
B(0, r)

f(x)dx,

and |B(0, r)| is the measure of B(0, r).

Remark 1.1 If two functions which differ by a constant are regarded as a function in

the space CBMOq,λ(Rn), then CBMOq,λ(Rn) becomes a Banach space. Apparently, (1.1)

is equivalent to the condition (see [3–4])

sup
r>0

inf
c∈C

{ 1

|B(0, r)|1+λq

∫
B(0, r)

|f(x)− c|qdx
} 1

q

< ∞.

Definition 1.2 [3–4] (Central Morrey spaces) Let 1 < q < ∞ and −1

q
< λ < 0. The central

Morrey space Lq,λ(Rn) is defined by

∥f∥Lq,λ(Rn) = sup
r>0

{ 1

|B(0, r)|1+λq

∫
B(0, r)

|f(x)|qdx
} 1

q

< ∞, (1.2)

where

B(0, r) = {x ∈ Rn : |x| < r},

and |B(0, r)| is the measure of B(0, r).

Remark 1.2 It follows from (1.1) and (1.2) that Lq,λ(Rn) is a Banach space continuously

included in CBMOq,λ(Rn).


