## One Nonparabolic End Theorem on Kähler Manifolds

Zhu Peng

(School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, Jiangsu, 213001)

Communicated by Yin Jing-xue

**Abstract:** In this paper, the complete noncompact Kähler manifolds satisfying the weighted Poincaré inequality are considered and one nonparabolic end theorem which generalizes Munteanu's result is obtained.

Key words: nonparabolic end, weighted Poincaré inequality, Kähler manifold 2010 MR subject classification: 53C21, 54C42 Document code: A Article ID: 1674-5647(2014)03-0237-08

DOI: 10.13447/j.1674-5647.2014.03.05

## 1 Introduction

Li and Wang<sup>[1-2]</sup> gave a rigidity theorem for a manifold M with  $\lambda_1(M) > 0$  and the Ricci curvature  $Ric_M$  being bounded from below by  $-\frac{n-1}{n-2}\lambda_1(M)$ , where  $\lambda_1(M)$  is the lowest bound of the spectrum of the Laplacian acting on  $L^2$  functions. A complete Riemannian manifold  $(M, ds^2)$  is said to satisfy a weighted Poincaré inequality with non-negative weighted function  $\rho$  if the equality

$$\int_{M} \rho \phi^{2} \leq \int_{M} |\nabla \phi|^{2}$$

holds for all compactly supported piecewise smooth functions  $\phi \in C_0^{+\infty}(M)$ , where  $C_0^{+\infty}(M)$ are all compactly supported piecewise smooth functions on M.  $(M, ds^2)$  is said to satisfy property  $(\mathcal{P}_{\rho})$  if M satisfies a weighted Poincaré inequality with  $\rho$  and  $\rho ds^2$  being complete. Obviously, the notion of the property  $(\mathcal{P}_{\rho})$  is a generalization of  $\lambda_1(M) > 0$ . Li and Wang considered a class of Riemannian manifolds of dimension  $n \geq 4$  satisfying the property  $(\mathcal{P}_{\rho})$ and having the Ricci curvature bounded below in terms of the weight function and gave a

Received date: May 16, 2011.

Foundation item: The NSF (11101352) of China, New Century Talent Project of Yangzhou University, Fund of Jiangsu University of Technology (KYY 13005) and Qing Lan Project.

E-mail address: zhupeng2004@126.com (Zhu P).

rigidity theorem if  $\rho$  grows no more than exponential increase (see Theorem 5.2 in [3]). Later, Cheng and Zhou<sup>[4]</sup> obtained a result which generalized Theorem 5.2 in [3]. Considering the manifolds satisfying property  $(\mathcal{P}_{\rho})$  for a weight function  $\rho$  that has limit zero at infinity, i.e.,  $\lim_{x\to+\infty} \rho(x) = 0$ , Li and Wang<sup>[3]</sup> proved that for  $n \geq 4$  and the Ricci curvature  $Ric_M(x)$  of M being bounded from below by  $-\frac{n-1}{n-2}\rho(x)$  for each  $x \in M$ , the Riemannian manifold has only one nonparabolic end. In the setting of Kähler manifolds case, Munteanu<sup>[5]</sup> obtained analogous result to that for Riemannian manifolds, i.e., a Kähler manifold  $M^{2n}$   $(n \geq 2)$  has only one nonparabolic end if the Ricci curvature  $Ric_M(x)$  of M is bounded from below by  $-4\rho(x)$  for each  $x \in M$ .

In this paper, the case of Kähler manifold is considered. Following the idea of Cheng and Zhou<sup>[4]</sup>, a generalized theorem which contains the result of Munteanu<sup>[5]</sup> is obtained. More precisely, we have

**Theorem 1.1** Let M be a complete noncompact real 2n-dimensional Kähler manifold with property  $(\mathcal{P}_{\rho})$   $(n \geq 2)$ . Suppose that the Ricci curvature of M satisfies

$$Ric_M(x) \ge -4\tau(x)$$

where the non-negative bounded function  $\tau(x)$  satisfies Poincaré's inequality

$$\int_M \tau \phi^2 \le \int_M |\nabla \phi|^2$$

for all  $\phi \in C_0^{+\infty}(M)$ . If

$$\lim_{x \to \infty} \sup\{\rho(x), \ \tau(x)\} = 0,$$

then M has only one nonparabolic end.

**Remark 1.1** If we choose  $\tau = \rho$  in Theorem 1.1, then it is just Munteanu's result, that is, Theorem 1 in [5].

## 2 Proof of the Main Result

Assume by absurd that M had at least two non parabolic ends, and thus there would exist a bounded harmonic function f with finite Dirichlet integral on M (see [6]). Moreover, we can assume that  $\inf f = 0$  and  $\sup f = 1$  with infimum and supremum achieved at infinity of nonparabolic end E and  $F = M \setminus E$ , respectively. One has the improved Bochner formula for the function f:

$$\Delta h \ge -2\tau h + h^{-1} |\nabla h|^2, \tag{2.1}$$

where  $h = |\nabla f|^{\frac{1}{2}}$  (see [7]).

**Lemma 2.1** Let  $g = h\varphi(f)$  with  $\varphi: (0,1) \to (0,+\infty)$  being a  $C^{\infty}$  function which is to be determined later. Then

$$\Delta g \ge -2\tau g + g^{-1} |\nabla g|^2 + g |\nabla f|^2 (\varphi^{-1} \varphi'' - \varphi^{-2} (\varphi')^2).$$
(2.2)