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generalizes Munteanu’s result is obtained.
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1 Introduction

Li and Wang[1–2] gave a rigidity theorem for a manifoldM with λ1(M) > 0 and the Ricci cur-

vature RicM being bounded from below by −n− 1

n− 2
λ1(M), where λ1(M) is the lowest bound

of the spectrum of the Laplacian acting on L2 functions. A complete Riemannian mani-

fold (M, ds2) is said to satisfy a weighted Poincaré inequality with non-negative weighted

function ρ if the equality ∫
M

ρϕ2 ≤
∫
M

|∇ϕ|2

holds for all compactly supported piecewise smooth functions ϕ ∈ C+∞
0 (M), where C+∞

0 (M)

are all compactly supported piecewise smooth functions on M . (M, ds2) is said to satisfy

property (Pρ) if M satisfies a weighted Poincaré inequality with ρ and ρds2 being complete.

Obviously, the notion of the property (Pρ) is a generalization of λ1(M) > 0. Li and Wang

considered a class of Riemannian manifolds of dimension n ≥ 4 satisfying the property (Pρ)

and having the Ricci curvature bounded below in terms of the weight function and gave a
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rigidity theorem if ρ grows no more than exponential increase (see Theorem 5.2 in [3]). Later,

Cheng and Zhou[4] obtained a result which generalized Theorem 5.2 in [3]. Considering the

manifolds satisfying property (Pρ) for a weight function ρ that has limit zero at infinity, i.e.,

lim
x→+∞

ρ(x) = 0, Li and Wang[3] proved that for n ≥ 4 and the Ricci curvature RicM (x) of

M being bounded from below by −n− 1

n− 2
ρ(x) for each x ∈M , the Riemannian manifold has

only one nonparabolic end. In the setting of Kähler manifolds case, Munteanu[5] obtained

analogous result to that for Riemannian manifolds, i.e., a Kähler manifold M2n (n ≥ 2) has

only one nonparabolic end if the Ricci curvature RicM (x) of M is bounded from below by

−4ρ(x) for each x ∈M .

In this paper, the case of Kähler manifold is considered. Following the idea of Cheng and

Zhou[4], a generalized theorem which contains the result of Munteanu[5] is obtained. More

precisely, we have

Theorem 1.1 Let M be a complete noncompact real 2n-dimensional Kähler manifold

with property (Pρ) (n ≥ 2). Suppose that the Ricci curvature of M satisfies

RicM (x) ≥ −4τ(x),

where the non-negative bounded function τ(x) satisfies Poincaré’s inequality∫
M

τϕ2 ≤
∫
M

|∇ϕ|2

for all ϕ ∈ C+∞
0 (M). If

lim
x→∞

sup{ρ(x), τ(x)} = 0,

then M has only one nonparabolic end.

Remark 1.1 If we choose τ = ρ in Theorem 1.1, then it is just Munteanu’s result, that

is, Theorem 1 in [5].

2 Proof of the Main Result

Assume by absurd that M had at least two non parabolic ends, and thus there would exist

a bounded harmonic function f with finite Dirichlet integral on M (see [6]). Moreover, we

can assume that inf f = 0 and sup f = 1 with infimum and supremum achieved at infinity of

nonparabolic end E and F = M \ E, respectively. One has the improved Bochner formula

for the function f :

∆h ≥ −2τh+ h−1|∇h|2, (2.1)

where h = |∇f | 12 (see [7]).

Lemma 2.1 Let g = hφ(f) with φ : (0, 1) → (0,+∞) being a C∞ function which is to

be determined later. Then

∆g ≥ −2τg + g−1|∇g|2 + g|∇f |2(φ−1φ′′ − φ−2(φ′)2). (2.2)


