A Note on Generalized Long Modules

Guo Shuang-jian¹ and Dong Li-hong²

(1. School of Mathematics and Statistics, Guizhou University of Finance and Economics,

 $Guiyang,\ 550025)$

(2. College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, 453007)

Communicated by Du Xian-kun

Abstract: Let ${}_{H}\mathcal{L}^{B}$ be the category of generalized Long modules, that is, H-modules and B-comodules over Hopf algebras B and H. We describe a new Turaev braided group category over generalized Long module ${}_{H}\mathcal{L}^{B}(\mathscr{S}(\pi))$ where the opposite group $\mathscr{S}(\pi)$ of the semidirect product of the opposite group π^{op} of a group π by π . As an application, we show that this is a Turaev braided group-category ${}_{H}\mathcal{L}^{B}$ for a quasitriangular Turaev group-coalgebra H and a coquasitriangular Turaev group-algebra B.

Key words: Turaev braided group category, generalized Long module, Turaev group-(co)algebra, (co)quasitriangular structure

2010 MR subject classification: 16W30

Document code: A

Article ID: 1674-5647(2014)04-0320-09 DOI: 10.13447/j.1674-5647.2014.04.05

1 Introduction

For a group π , Turaev^[1] introduced the notion of a braided π -monoidal category, here called Turaev braided π -category, and showed that such a category gives rise to a 3-dimensional homotopy quantum field theory. Kirillov^[2] found that such Turaev braided π -categories also provide a suitable mathematical tool to describe the orbifold models which arise in the study of conformal field theories. Virelizier^[3] used Turaev braided π -category to construct Hennings-type invariants of flat π -bundles over complements of links in the 3-sphere. We note that a Turaev braided π -category is a braided monoidal category when π is trivial.

Starting from the category of Yetter-Drinfeld modules, Panaite and Staic^[4] constructed

Received date: April 18, 2012.

Foundation item: The NSF (11101128) of China, the NSF (102300410049) of Henan Province and the NSF (BK2012736) of Jiangsu Province.

E-mail address: shuangjguo@gmail.com (Guo S J).

The paper is organized as follows. In Section 2, we show that the braided monoidal structure on the category ${}_{H}\mathcal{L}^{B}$ depends on additional compatibility conditions (see Theorem 2.3). In Section 3, we find that ${}_{H}\mathcal{L}^{B}(\mathscr{S}(\pi))$ is a Turaev braided $\mathscr{S}(\pi)$ -category if and only if there is a linear map $\mathscr{Q} : B \otimes B \longrightarrow H \otimes H$ satisfying some conditions (see Theorem 3.8). In Section 4, as an application, for a quasitriangular Turaev $\mathscr{S}(\pi)$ -coalgebra H and a coquasitriangular Turaev $\mathscr{S}(\pi)$ -algebra B, we show that ${}_{H}\mathcal{L}^{B}(\mathscr{S}(\pi))$ is a Turaev braided $\mathscr{S}(\pi)$ -coalgebra H and a coquasitriangular Turaev $\mathscr{S}(\pi)$ -algebra B, we show that ${}_{H}\mathcal{L}^{B}(\mathscr{S}(\pi))$ is a Turaev braided $\mathscr{S}(\pi)$ -category (see Theorem 4.4).

2 Preliminaries

Throughout the paper, let k be a fixed field and \otimes be over k. For a Hopf algebra H, we always denote by Aut(H) the group of Hopf automorphism of H. For the comultiplication Δ in a coalgebra C, we use the Sweedler-Heyneman's notation (see [9]):

$$\Delta(c) = c_1 \otimes c_2, \qquad c \in C.$$

We denote by Mod^B the category of the right *B*-comodules and for any $M \in \operatorname{Mod}^B$, we write

$$\rho(m) = m_{(0)} \otimes m_{(1)}, \qquad m \in M.$$

Similarly, we have the $_H$ Mod of left H-modules.

Definition 2.1^[1] Let π be a group with the unit e. Recall from [1] that a Turaev π -category is a monoidal category C which consists of the following data:

(1) A family of subcategories $\{C_{\alpha}\}_{\alpha \in \pi}$ such that C is a disjoint union of this family and such that $U \otimes V \in C_{\alpha\beta}$, for any $\alpha, \beta \in \pi$, if the $U \in C_{\alpha}$ and $V \in C_{\beta}$. Here the subcategory C_{α} is called the α th component of C;

(2) A group homomorphism $\varphi : \pi \longrightarrow \operatorname{aut}(\mathcal{C}), \beta \mapsto \varphi_{\beta}$, the conjugation, (where $\operatorname{aut}(\mathcal{C})$ is the group of invertible strict tensor functors from \mathcal{C} to itself) such that $\varphi_{\beta}(\mathcal{C}_{\alpha}) = \mathcal{C}_{\beta\alpha\beta^{-1}}$ for any $\alpha, \beta \in \pi$. Here the functors φ_{β} are called conjugation isomorphisms.

We use the left index notation (see [8,10]): Given $\beta \in G$ and an object $V \in C_{\beta}$, the functor φ_{β} will be denoted by $V(\cdot)$ or $\beta(\cdot)$. We use the notation $\overline{V}(\cdot)$ for $\beta^{-1}(\cdot)$. Then we have $V \operatorname{id}_{U} = \operatorname{id}_{V_{U}}$ and $V(g \circ f) = Vg \circ Vf$. We remark that since the conjugation $\varphi : \pi \longrightarrow \operatorname{aut}(\mathcal{C})$ is a group homomorphism, for any $V, W \in C$, we have

 ${}^{V\otimes W}(\,\cdot\,) = {}^{V}({}^{W}(\,\cdot\,)), \qquad {}^{1}(\,\cdot\,) = {}^{V}(\overline{V}(\,\cdot\,)) = \overline{V}({}^{V}(\,\cdot\,)) = \mathrm{id}_{\mathcal{C}},$

and that since, for any $V \in C$, the functor $^{V}(\cdot)$ is strict, we have $^{V}(f \otimes g) = {}^{V}f \otimes {}^{V}g$, for any morphism f and g in C, and $^{V}1 = 1$. And we use C(U, V) to denote a set of morphisms (or arrows) from U to V in C.

A Turaev braided π -category is a Turaev π -category C endowed with a braiding, i.e., with a family of isomorphisms

$$\tau = \{\tau_{U,V} \in \mathcal{C}(U \otimes V, \ (^{U}V) \otimes U)\}_{U,V \in \mathcal{C}}$$