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Abstract: In this paper, we combine a split least-squares procedure with the method

of characteristics to treat convection-dominated parabolic integro-differential equa-

tions. By selecting the least-squares functional properly, the procedure can be split

into two independent sub-procedures, one of which is for the primitive unknown and

the other is for the flux. Choosing projections carefully, we get optimal order H1(Ω)

and L2(Ω) norm error estimates for u and sub-optimal (L2(Ω))d norm error estimate

for σ. Numerical results are presented to substantiate the validity of the theoretical

results.
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1 Introduction

We consider the following convection-dominated parabolic integro-differential equations:
c(x)

∂u

∂t
+ d(x)·∇u−∇·

(
A(x)∇u+B(x)

∫ t

0

∇u(x, s)ds
)
= f(x, t), (x, t) ∈ (Ω × I),

u(x, t) = 0, (x, t) ∈ (Γ × I),

u(x, 0) = u0(x), x ∈ Ω ,

(1.1)

where I = (0, T ] is the time interval, Ω is a bounded polygonal domain in Rd, d = 2, 3, with

a Lipschitz continuous boundary Γ , d is the space dimension. d(x) = (d1(x), · · · , dd(x))T.
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A(x) = (aij(x))d×d, B(x) = (bij(x))d×d are bounded, symmetric and positive definite

matrices, i.e., there exist positive constants a∗, a
∗, b∗ and b∗ such that

a∗∥ξ∥2 ≤ (Aξ, ξ) ≤ a∗∥ξ∥2, b∗∥ξ∥2 ≤ (Bξ, ξ) ≤ b∗∥ξ∥2, ξ ∈ Rd.

We make the following assumptions: there exist positive constants k1, k2 such that

0 < k1 ≤ c(x) ≤ k2, ∥d∥1,∞ + ∥c∥1,∞ ≤ k2.

We also assume that Ω is H2-regular: for f ∈ L2(Ω) the solution of the following problem

−∇ · (A∇w) = f in Ω , w|Γ = 0

exists and ∥w∥2 ≤ K∥f∥.
This model arises from many physical processes in which it is necessary to take into

account the effects of memory due to the deficiency of the usual diffusion equations (see

[1–2]). As we all know, the numerical simulation of convection-dominated problems requires

special treatment. Generally, they either smear sharp physical fronts with excessive numer-

ical diffusion, or introduce nonphysical oscillations into numerical solutions. The method of

characteristic has proved effective in treating convection-dominated problems (see [3–4]).

We have introduced the least-squares method for such equations when A,B are propor-

tional to a unit matrix in [5]. The least-squares finite element procedure has two typical

advantages as follows: it is not subject to Ladyzhenskaya[6], Babuška[7], Brezzi[8] consis-

tency condition, so the choice of approximation spaces becomes flexible, and it results in a

symmetric positive definite system. However, it usually needs to solve a coupled system of

equations for conventional least-squares finite element procedure, which brings to difficulties

in some extent. We only get the optimal order H1(Ω) norm error estimate for u in [5].

In [9–10], a kind of split least-squares Galerkin procedure was constructed for station-

ary diffusion reaction problems and parabolic problems. The purpose of this paper is to

combine the split least-squares procedure with the method of characteristics for convection-

dominated parabolic integro-differential equations. The most advantage of the scheme is:

by selecting the least-squares functional properly, the resulting procedure can be split into

two independent symmetric positive definite sub-schemes. One of sub-procedures is for the

primitive unknown variable u, which is the same as a stand Galerkin characteristic finite

element procedure and the other is for the introduced flux variable σ. By carefully choosing

projections, we see that the method leads to the optimal order H1(Ω) and L2(Ω) norm error

estimates for u and sub-optimal (L2(Ω))d norm error estimate for σ.

The paper is organized as follows. In Section 2, we formulate the procedure. The

convergence theory on the algorithm is established in Section 3. In Section 4 we give the

numerical experiment.

As in [11], we assume that the problem (1.1) is periodic with Ω . In this paper we use

W k,p (k ≥ 0, 1 ≤ p ≤ ∞) to denote Sobolev spaces (see [12]) defined on Ω with a usual norm

∥ · ∥Wk,p(Ω), and H
k(Ω), L2(Ω) with norms ∥ · ∥k = ∥ · ∥Hk(Ω), ∥ · ∥ = ∥ · ∥L2(Ω), respectively.

For simplicity we also use Ls(Hk) to denote Ls(0, T ; Hk(Ω)). The inner product ( · , · ) is
both used for scalar-valued functions and vector-valued functions. Throughout this paper,

the symbols K and δ are used to denote a generic constant and a generic small positive

constant, respectively, which may appear differently at different occurrences.


