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Abstract: This paper deals with the existence of solutions to the p(t)-Laplacian

equation with four-point boundary conditions. It is shown, by Leray-Schauder fixed

point theorem and degree method, that under suitable conditions, solutions of the

problem exist. The interesting point is that p(t) is a general function.
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1 Introduction

In this paper, we investigate the existence of solutions to the following p(t)-Laplacian ordi-

nary differential equations with four-point boundary conditions:{
(|u′(t)|p(t)−2u′(t))′ + a(t)f(t, u(t), u′(t)) = 0, t ∈ (0, 1),

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,
(1.1)

where the functions f, p, a, and the constants α, β, ξ, η satisfy:

(H1) f ∈ C([0, 1] × R × R, R), p ∈ C([0, 1], R) and p(t) > 1, a ∈ C((0, 1), R) is

probably singular at t = 0 or t = 1 and satisfies 0 <

∫ 1

0

|a(t)|dt < +∞.

(H2) α, β > 0, and 0 < ξ < η < 1.
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In the recent years, differential equations and variational problems with variable exponent

have been studied extensively, for which the readers may refer to [1–6]. Such problems arise

in the study of image processing, electrorheological fluids dynamics and elastic mechanics

(see [7–10]).

In the case when p is a constant, the problem (1.1) becomes the classical p-Laplacian

problem. Lian and Ge[11] discussed the following problem:{
(|u′(t)|p−2u′(t))′ + f(t, u(t)) = 0, 0 < t < 1,

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,

and obtained the existence of multiple positive solutions. For more information about the

existence of solutions for ordinary differential equations with p-Laplacian operator, the in-

terested readers may refer to [12–17] and references therein.

Motivated by the results of the above papers, we study the existence of solutions to the

problem (1.1). The main features of this paper are as follows. Firstly, p(t) is a general func-

tion, which is more complicated than the case when p is constant. Secondly, the nonlinear

term f may change sign and a(t) is allowed to be singular at t = 0 or t = 1, which differ

from those p-Laplacian problems.

The outline of this paper is as follows. In Section 2, we give some necessary preliminaries

and important lemmas. Sections 3 is devoted to the proof of the existence of solutions to

the problem (1.1).

2 Preliminaries

In this section, we give some preliminaries and lemmas.

Define U = C1[0, 1]. It is well known that U is a Banach space with the norm ∥ · ∥1
defined by

∥u∥1 = ∥u∥+ ∥u′∥,

where

∥u∥ = max
t∈[0,1]

|u(t)|, ∥u′∥ = max
t∈[0,1]

|u′(t)|.

Set

p− = min
t∈[0,1]

p(t), p+ = max
t∈[0,1]

p(t).

Denote

φ(r, x) = |x|p(r)−2x for any fixed r ∈ [0, 1], x ∈ R,

and denote φ−1(r, · ) as

φ−1(r, x) = |x|
2−p(r)
p(r)−1x for any fixed r ∈ [0, 1], x ∈ R\{0},

where φ−1(r, 0) = 0.

Evidently, φ−1(r, · ) is continuous and sends a bounded sets into a bounded sets.

To obtain the existence of solutions of the problem (1.1), we need the following lemmas.

The proofs are standard, and we omit the details.


