Additive Maps Preserving the Star Partial Order on $\mathcal{B}(\mathcal{H})$

XI CUI AND JI GUO-XING *

(College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062)

Communicated by Ji You-qing

Abstract: Let $\mathcal{B}(\mathcal{H})$ be the C^* -algebra of all bounded linear operators on a complex Hilbert space \mathcal{H} . It is proved that an additive surjective map φ on $\mathcal{B}(\mathcal{H})$ preserving the star partial order in both directions if and only if one of the following assertions holds. (1) There exist a nonzero complex number α and two unitary operators Uand V on \mathcal{H} such that $\varphi(X) = \alpha UXV$ or $\varphi(X) = \alpha UX^*V$ for all $X \in \mathcal{B}(\mathcal{H})$. (2) There exist a nonzero α and two anti-unitary operators U and V on \mathcal{H} such that $\varphi(X) = \alpha UXV$ or $\varphi(X) = \alpha UX^*V$ for all $X \in \mathcal{B}(\mathcal{H})$. Key words: linear operator, star partial order, additive map 2010 MR subject classification: 47B49, 47B47 Document code: A Article ID: 1674-5647(2015)01-0089-08 DOI: 10.13447/j.1674-5647.2015.01.10

1 Introduction

In the last few decades, many researchers have studied properties of various partial orders on matrix algebras, or operator algebras acting on a complex infinite dimensional Hilbert space, such as minus partial order, star partial order, left and right star partial order and so on (see [1–6]). One of the orders on the algebra M_n of all $n \times n$ complex matrices is the star partial order " \leq " defined by Drazin in [5]. Let $A, B \in M_n$. Then we say that $A \stackrel{*}{\leq} B$ if $A^*A = A^*B$ and $AA^* = BA^*$. We note that this definition can be extended to a C^* -algebra by the same way. In particular, it can be extended to the C^* -algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a complex Hilbert space \mathcal{H} . For example, motivated by Šemrl's approach presented in [7] for minus partial order, Dolinar and Marovt^[4] gave an equivalent

Received date: July 11, 2013.

Foundation item: The NSF (11371233) of China and the Fundamental Research Funds (GK201301007) for the Central Universities.

^{*} Corresponding author.

E-mail address: xicui@snnu.edu.cn (Xi C), gxji@snnu.edu.cn (Ji G X).

definition (see Definition 2 in [4]) of the star partial order and considered some properties of this partial order. We can refer [1, 4] to see more interesting properties.

On the other hand, as partially ordered algebraic structures on M_n and $\mathcal{B}(\mathcal{H})$, what are the automorphisms of M_n and $\mathcal{B}(\mathcal{H})$ with respect to those partial orders? These topics have been studied and some interesting results have been obtained. Šemrl^[7] described the structure of corresponding automorphisms for the minus partial order. For the star partial order, Guterman^[8] characterized linear bijective maps on M_n preserving the star partial order and Legiša^[9] considered automorphisms of M_n with respect to the star partial order. Recently, several authors consider the automorphisms of certain subspaces of $\mathcal{B}(\mathcal{H})$ with respect to the star partial order when \mathcal{H} is infinite dimensional. Dolinar and Guterman^[10] studied the automorphisms of the algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable complex Hilbert space \mathcal{H} and they characterized the bijective, additive, continuous maps on $\mathcal{K}(\mathcal{H})$ which preserve the star partial order in both directions. On the other hand, characterizations of certain continuous bijections on the normal elements of a von Neumann algebra preserving the star partial order in both directions are obtained by Bohata and Hamhalter^[11]. In this paper, we consider additive surjective maps preserving the star partial order in both directions on $\mathcal{B}(\mathcal{H})$ and characterizations of those maps are given. In particular, we improve the main result in [10].

Let \mathcal{H} be a complex Hilbert space and denote by dim \mathcal{H} the dimension of \mathcal{H} . Let \mathbb{C} and \mathbb{Q} denote the complex field and the rational number field, respectively. Let $\mathcal{B}(\mathcal{H})$, $\mathcal{K}(\mathcal{H})$ and $\mathcal{F}(\mathcal{H})$ be the algebras of all bounded linear operators, the compact operators and the finite rank operators on \mathcal{H} , respectively. For every pair of vectors $\mathbf{x}, \mathbf{y} \in \mathcal{H}, \langle \mathbf{x}, \mathbf{y} \rangle$ denotes the inner product of \mathbf{x} and \mathbf{y} , and $\mathbf{x} \otimes \mathbf{y}$ stands for the rank-1 linear operator on \mathcal{H} defined by $(\mathbf{x} \otimes \mathbf{y})\mathbf{z} = \langle \mathbf{z}, \mathbf{y} \rangle \mathbf{x}$ for any $\mathbf{z} \in \mathcal{H}$. If \mathbf{x} is a unit vector, then $\mathbf{x} \otimes \mathbf{x}$ is a rank-1 projection. $\sigma(\mathbf{A})$ is the spectrum of \mathbf{A} for any $\mathbf{A} \in \mathcal{B}(\mathcal{H})$. For a subset S of \mathcal{H} , [S] denotes the closed subspace of \mathcal{H} spanned by S and \mathbf{P}_M denotes the orthogonal projection on M for a closed subspace M of \mathcal{H} . We denote by $R(\mathbf{T})$ and $N(\mathbf{T})$ the range and the kernel of a linear map \mathbf{T} between two linear spaces. Throughout this paper, we generally denote by \mathbf{I} the identity operator on a Hilbert space.

2 Additive Maps Preserving the Star Partial Order

Let φ be an additive map on $\mathcal{B}(\mathcal{H})$. We say that φ preserves the star partial order if $\varphi(\mathbf{A}) \stackrel{*}{\leq} \varphi(\mathbf{B})$ for any $\mathbf{A}, \mathbf{B} \in \mathcal{B}(\mathcal{H})$ such that $\mathbf{A} \stackrel{*}{\leq} \mathbf{B}$. We say that φ preserves the star partial order in both directions if $\varphi(\mathbf{A}) \stackrel{*}{\leq} \varphi(\mathbf{B})$ if and only if $\mathbf{A} \stackrel{*}{\leq} \mathbf{B}$ for any $\mathbf{A}, \mathbf{B} \in \mathcal{B}(\mathcal{H})$. We firstly give the following lemma which generalizes Lemma 10 in [10].

Let $T \in \mathcal{B}(\mathcal{H})$. We denote by

 $H_1 = \overline{R(T^*)}, \qquad H_2 = N(T), \qquad K_1 = \overline{R(T)}, \qquad K_2 = N(T^*),$ respectively. Then