Globals of Completely Regular Monoids

WU QIAN-QIAN AND GAN AI-PING*

(College of Mathematics and Information Science, Jiangxi Normal University, Nanchang, 330022)

Communicated by Du Xian-kun

Abstract: An element of a semigroup S is called irreducible if it cannot be expressed as a product of two elements in S both distinct from itself. In this paper we show that the class C of all completely regular monoids with irreducible identity elements satisfies the strong isomorphism property and so it is globally determined.

Key words: completely regular monoid, irreducible element, power semigorup

2010 MR subject classification: 06A12

Document code: A

Article ID: 1674-5647(2015)03-0222-07 DOI: 10.13447/j.1674-5647.2015.03.04

1 Introduction and Preliminaries

The power semigroup, or global, of a semigroup S is the semigroup P(S) of all nonempty subsets of S equipped with the multiplication

 $AB = \{ab : a \in A, b \in B\}, \qquad A, B \in P(S).$

A class \mathcal{K} of semigroups is said to be globally determined if any two members of \mathcal{K} having isomorphic globals must themselves be isomorphic.

Tamura^[1] asked in 1967 whether the class of all semigroups is globally determined. The question was negatively answered in the class of all semigroups by Mogiljanskaja^[2] in 1973. Crvenković *et al.*^[3] proved that involution semigroups are not globally determined in 2001. But it is known that the following classes are globally determined: groups [4–5]; rectangular groups [6]; completely 0-simple semigroups [7]; finite semigroups [8]; lattices and semilattices are finite [11]; completely regular periodic monoids with irreducible identity [12].

In this paper we devote to the study of the global determinacy of completely regular semigroup and show that the class of all completely regular monoids with irreducible identity

Received date: Aug. 3, 2013.

Foundation item: The NSF (11261021) of China and the NSF (20142BAB201002) of Jiangxi Province.

^{*} Corresponding author.

E-mail address: molihuaqian@163.com (Wu Q Q), ganaiping78@163.com (Gan A P).

element satisfies the strong isomorphism property and so it is globally determined. Recall that a class \mathcal{K} of semigroups is said to satisfy the strong isomorphism property if for any S, $S' \in \mathcal{K}$ and for every isomorphism ψ from P(S) to P(S'), $\psi|_S$ (the restriction of ψ to S) is an isomorphism from S to S', where S (resp. S') is considered to be a subset of P(S) (resp. P(S')) by identifying an element x of S (resp. S') with the singleton set $\{x\}$. It was proved by Kobayashi^[10] that the class of semilattices satisfies the strong isomorphism property.

A few words on notation and terminology are in order. The set of idempotents of a semigroup S is denoted by E(S), and for each $a \in S$ the \mathcal{H} -class of S containing a is denoted by $H_a(S)$. A singleton member of P(S) frequently is identified with the element it contains. An element $a \in S$ is termed irreducible if it cannot be expressed as a product of two elements in S both distinct from themselves, i.e., if there exist $b, c \in S$ such that a = bc, then a = b or a = c. It is clear that if S is a monoid whose identity element 1 is irreducible, then 1 = bc implies that 1 = b = c.

We refer to the books [13–16] for all background information concerning semigroups and universal algebra.

2 Main Results

In this section, we denote the class of all completely regular monoids with irreducible identity elements by C. For convenience, for every monoid S, we use 1 rather than 1_S to denote its identity element.

Our main result, establishing the global determinacy of C, is proved via a sequence of lemmas. The first lemma implies that the class of all groups is globally determined, which is taken from Gould and Iskra^[11–12].

Lemma 2.1^[11] Let S be a semigroup and $e \in E(S)$. Then $H_e(\mathcal{P}(S)) = H_e(S)$.

Lemma 2.2 Let $S \in C$, and let A be an idempotent in P(S). Then |A| > 1 if and only if A satisfies one of the following two statements:

- (i) $A = \{1, a\} B$ or $A = B\{1, a\}$ for some $B \in P(S) \setminus \{A\}$ and some $a \in A$;
- (ii) $A = C^2$ for some $C \in P(S)$ such that $C \neq C^3$.

Proof. It follows immediately from Lemma 2.2 in [12].

Lemma 2.3^[12] Let $S \in C$. For $A \in P(S)$ the following statements are equivalent:

- (i) There exists an $e \in E(S)$ such that $A = \{1, e\}$;
- (ii) A is idempotent and irreducible, and the only solutions to XA = A are $\{1\}$ and A.

Lemma 2.4 Let $S \in C$, and $A \in P(S)$. Then there exist $a \in S \setminus E(S)$ and $a^2 \in E(S)$ such that $A = \{1, a\}$ if and only if A satisfies the following statements:

- (i) A^2 is idempotent, and A is not idempotent;
- (ii) There is a unique $e \in E(S) \setminus \{1\}$ such that $A^2\{1, e\} = A^2$;
- (iii) $A\{1, e\} = A^2$, where e is given as in (ii);