Almost Fuzzy Compactness in *L*-fuzzy Topological Spaces

LI HONG-YAN¹ AND CUI WEI²

(1. School of Mathematics and Information Science, Shandong Institute of Business and Technology, Yantai, Shandong, 264005)

(2. Department of Modern Science and Technology, Shenyang Municipal Party Committee Party School, Shenyang, 110036)

Communicated by Lei Feng-chun

Abstract: In this paper, the notion of almost fuzzy compactness is defined in L-fuzzy topological spaces by means of inequality, where L is a completely distributive DeMorgan algebra. Its properties are discussed and many characterizations of it are presented.

Key words: *L*-fuzzy topological space, *L*-fuzzy almost compactness, *L*-fuzzy compactness, almost fuzzy compactness

2010 MR subject classification: 54A40, 54D30, 03E72

Document code: A

Article ID: 1674-5647(2015)03-0267-07 DOI: 10.13447/j.1674-5647.2015.03.09

1 Introduction

Almost compactness is a very important concept. Many researchers have tried successfully to generalize the compactness theory of general topology to L-topology (see [1–9]). Recently, $\mathrm{Shi}^{[10]}$ introduced new definitions of almost fuzzy compactness in L-topological spaces with the help of inequality, where L is a completely distributive DeMorgan algebra. The aim of this paper is to generalize the notion of almost compactness in [10] to L-fuzzy topological spaces, thus some properties and characterizations are researched.

2 Preliminaries

In this paper, $(L, \vee, \wedge, ')$ is a completely distributive DeMorgan algebra (i.e., completely distributive lattice with order-reversing involution, see [11]). The largest element and the

Received date: Oct. 28, 2014.

Foundation item: The NSF (11471297) of China.

E-mail address: lihongyan@sdibt.edu.cn (Li H Y).

smallest element in L are denoted by \top and \bot , respectively.

Definition 2.1^[12] An L-fuzzy topology on a set X is a map $\tau : L^X \to L$ such that

(1) $\tau(\underline{\top}) = \tau(\underline{\perp}) = \overline{\top};$ (2) for all $U, V \in L^X, \tau(U \wedge V) \ge \tau(U) \wedge \tau(V);$ (3) for all $U_j \in L^X, j \in J, \tau(\bigvee_{j \in J} U_j) \ge \bigwedge_{j \in J} \tau(U_j).$

The pair (X, τ) is called an *L*-fuzzy topological space. Generally, $\tau(U)$ can be regarded as degree to which $U \in L^X$ is an open set, is called the degree of openness of U, meanwhile, $\tau^*(U) = \tau(U')$ is called the degree of closedness of U. For all $\mathcal{U} \subseteq \mathcal{L}^X$, $\tau(\mathcal{U}) = \bigwedge_{\mathcal{A} \in \mathcal{U}} \tau(\mathcal{A})$ is called the degree of openness of \mathcal{U} .

For a subfamily $\Phi \subseteq L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ .

Definition 2.2^[13] $A \ map \ \widetilde{\subset} : L^X \times L^X \to L \ is \ an \ L$ -fuzzy inclusion on X, it is defined as $\widetilde{\subset}(A, B) = \bigwedge_{x \in X} (A'(x) \lor B(x)).$ For simplicity, it is denoted by $[A \ \widetilde{\subset} B]$ instead of $\widetilde{\subset}(A, B)$, i.e., $[A \ \widetilde{\subset} B] = \bigwedge_{x \in X} (A'(x) \lor B(x)).$

3 Definitions and Properties of *L*-fuzzy Almost Compactness

Definition 3.1 Let (X, τ) be an L-fuzzy topological space and $A \in L^X$. For all $r \in L$, $A_{\tau_r}^{\circ} = \bigvee \{B \mid B \leq A, \ r \leq \tau(B), \ B \in L^X \}$

is called the r-interiors of A with respect to τ . The r-closures of A with respect to τ is defined as

$$A^-_{\tau_r} = \bigwedge \{ B \mid A \le B, \ r \le \tau^*(B), \ B \in L^X \}.$$

In the following part, $\{A \mid A_{\tau_r}^{\circ} = A, \ A \in L^X\}$ is marked as τ_r , i.e.,

An *L*-topology \mathcal{T} can be regarded as a map $\chi_{\mathcal{T}}: L^X \to L$ defined by

$$\chi_{\mathcal{T}}(A) = \begin{cases} \top, & A \in \mathcal{T}; \\ \bot, & A \notin \mathcal{T}. \end{cases}$$

In this way, $(X, \chi_{\mathcal{T}})$ is a special *L*-fuzzy topological space and

$$A^-_{\chi_{\mathcal{T}^+}} = A^-, \quad A^\circ_{\chi_{\mathcal{T}^+}} = A^\circ, \qquad A \in L^X.$$

This shows that Definition 3.1 can be regarded as the generalization in *L*-fuzzy topological space of the interiors and closures in *L*-topological space.

By Definition 3.1, we have the following theorem.

Theorem 3.1 Let (X, \mathcal{T}) be an L-topological space and $A \in L^X$. Then, for all $r, s \in L$, (1) $A \leq A^-_{\tau_r}, \tau^*(A) \leq \tau^*(A^-_{\tau_r});$ (2) $A^+_{\tau_r} \leq A, \tau(A) \leq \tau(A^+_{\tau_r});$