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1 Introduction

Almost compactness is a very important concept. Many researchers have tried successfully

to generalize the compactness theory of general topology to L-topology (see [1–9]). Recently,

Shi[10] introduced new definitions of almost fuzzy compactness in L-topological spaces with

the help of inequality, where L is a completely distributive DeMorgan algebra. The aim of

this paper is to generalize the notion of almost compactness in [10] to L-fuzzy topological

spaces, thus some properties and characterizations are researched.

2 Preliminaries

In this paper, (L, ∨, ∧, ′) is a completely distributive DeMorgan algebra (i.e., completely

distributive lattice with order-reversing involution, see [11]). The largest element and the

Received date: Oct. 28, 2014.
Foundation item: The NSF (11471297) of China.
E-mail address: lihongyan@sdibt.edu.cn (Li H Y).



268 COMM. MATH. RES. VOL. 31

smallest element in L are denoted by ⊤ and ⊥, respectively.

Definition 2.1 [12] An L-fuzzy topology on a set X is a map τ : LX → L such that

(1) τ(⊤) = τ(⊥) = ⊤;

(2) for all U, V ∈ LX , τ(U ∧ V ) > τ(U) ∧ τ(V );

(3) for all Uj ∈ LX , j ∈ J, τ(
∨
j∈J

Uj) >
∧
j∈J

τ(Uj).

The pair (X, τ) is called an L-fuzzy topological space. Generally, τ(U) can be regarded

as degree to which U ∈ LX is an open set, is called the degree of openness of U , meanwhile,

τ∗(U) = τ(U ′) is called the degree of closedness of U . For all U ⊆ LX , τ(U) =
∧

A∈U
τ(A) is

called the degree of openness of U .
For a subfamily Φ ⊆ LX , 2(Φ) denotes the set of all finite subfamilies of Φ.

Definition 2.2 [13] A map ⊂̃ : LX×LX → L is an L-fuzzy inclusion on X, it is defined as

⊂̃(A, B) =
∧

x∈X

(A′(x) ∨ B(x)). For simplicity, it is denoted by [A⊂̃B] instead of ⊂̃(A, B),

i.e., [A⊂̃B] =
∧

x∈X

(A′(x) ∨B(x)).

3 Definitions and Properties of L-fuzzy Almost Com-
pactness

Definition 3.1 Let (X, τ) be an L-fuzzy topological space and A ∈ LX . For all r ∈ L,

A◦
τr =

∨
{B | B ≤ A, r ≤ τ(B), B ∈ LX}

is called the r-interiors of A with respect to τ . The r-closures of A with respect to τ is

defined as

A−
τr =

∧
{B | A ≤ B, r ≤ τ∗(B), B ∈ LX}.

In the following part, {A | A◦
τr = A, A ∈ LX} is marked as τr, i.e.,

τr = {A | A◦
τr = A, A ∈ LX}.

An L-topology T can be regarded as a map χT : LX → L defined by

χT (A) =

{
⊤, A ∈ T ;

⊥, A /∈ T .

In this way, (X, χT ) is a special L-fuzzy topological space and

A−
χT ⊤

= A−, A◦
χT ⊤

= A◦, A ∈ LX .

This shows that Definition 3.1 can be regarded as the generalization in L-fuzzy topological

space of the interiors and closures in L-topological space.

By Definition 3.1, we have the following theorem.

Theorem 3.1 Let (X, T ) be an L-topological space and A ∈ LX . Then, for all r, s ∈ L,

(1) A ≤ A−
τr , τ

∗(A) ≤ τ∗(A−
τr );

(2) A◦
τr ≤ A, τ(A) ≤ τ(A◦

τr );


