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Abstract: In the paper we introduce the notions of the separation factor κ and give

a representive of metric projection on an n-codimension subspace (or an affine set)

under certain conditions in Banach space. Further, we obtain the distance formula

from any point x to a finite n-codimension subspace. Results extend and improve the

corresponding results in Hilbert space.

Key words: n-codimension, separation factor κ, weakly completely separated

2010 MR subject classification: 41A65, 46B20

Document code: A

Article ID: 1674-5647(2015)04-0373-10

DOI: 10.13447/j.1674-5647.2015.04.09

1 Introduction

Let X be a linear normed space and L be a subspace of X. L is called to be n-codimension

space if there exists an n-dimension subspace N such that L
⊕

N = X. In Hilbert space,

it is well known that there is a formula of the distance from any point x to L, which can

be used to solve some optimal control problems (see [1]). In Banach space, Oshman[2] and

Fang[3] studied the continuity of metric projection, Fedorov[4] discussed the properties and

characterization of the optimal approximation on the subspace of finite codimension in C[Ω ].

The representive of the optimal approximation element on a subspace of n-codimension

in Banach space is still an unsolved problem. Undoubtedly, one of the main difficulties

in dealing with such a problem is that norms in general Banach space are lack of “nice”
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properties such as orthogonality (see [5–6]). Wang et al. obtained the representive of the

optimal approximation element and the distance formulas from a point x to a hyperplane

L (i.e., n = 1) (see [7–9]). However, it is more difficult if the dimension of N is larger

than 1, a great number of problems on the minimum norm with constrained conditions in

optimization and cybernetics can be classified as the case on n > 1, for example, calculating

min{∥x∥} under constrained conditions {⟨y∗i , x⟩ = ci, y∗i ∈ X∗, x ∈ X, i = 1, 2, · · · , n}.
So it is very meaningful to get a representive of metric projection on a finite n-codimension

subspace (or the affine set).

2 Preliminaries

Definition 2.1 Let X be a Banach space and L ⊂ X. Set

PL(x) = {l ∈ L | ∥l − x∥ = d(x, L) = inf
l∈L

{∥l − x∥},

where d(x, L) denotes the distance from the point x to L.

Definition 2.2 Let X be a Banach space and X∗ be the dual space of X. The set-valued

map FX : X 7→ X∗ is defined by

FX(x) = {x∗ ∈ X | ⟨x∗, x⟩ = ∥x∗∥2 = ∥x∥2},
and the dual map F−1

X : X∗ 7→ X is defined by

F−1
X (x∗) = {x ∈ X | ⟨x∗, x⟩ = ∥x∗∥2 = ∥x∥2}.

Definition 2.3 Let X be a reflexive Banach space and X∗∗ be the quadratic dual space

of X. The typical map J : X 7→ X∗∗ is defined by

J(x) = {x∗∗ ∈ X∗∗ | ∀x∗ ∈ X∗, ⟨x∗, x⟩ = ⟨x∗, x∗∗⟩},
and

J−1(x∗∗) = {x ∈ X | ∀x∗ ∈ X∗, ⟨x∗, x⟩ = ⟨x∗, x∗∗⟩}.

Definition 2.4 Let X be a Banach space and N be an n-dimension subspace of X. The

subspace L is called to be a finite n-codimension if L
⊕

N = X.

Lemma 2.1 Let X be a Banach space. Then L is a finite n-codimension subspace if and

only if

L = {x ∈ X | ⟨m∗, x⟩ = 0, ∀m∗ ∈ M∗ ⊆ X∗},

where M∗ is an n-subspace of X∗.

Definition 2.5 Assume that E is an n-dimension subspace of the Banach X and e∗ ∈ E∗.

The extension by which e∗ is extended to ê∗ ∈ X∗ satisfying

⟨ê∗, e⟩ = ⟨e∗, e⟩, e ∈ E,

is called to be a value-preserving prolongation in E. If the value-preserving prolongation of

e∗ is norm-preserving, specially, we use e∗ to denote it and say that it is a Hahn-Banach

extension.


