Ore Extensions over Weakly 2-primal Rings

WANG YAO¹, JIANG MEI-MEI¹ AND REN YAN-LI^{2,*}

(1. School of Mathematics and Statistics, Nanjing University of Information Science

and Technology, Nanjing, 210044)

(2. School of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing, 211171)

Communicated by Du Xian-kun

Abstract: A weakly 2-primal ring is a common generalization of a semicommutative ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore extensions over weakly 2-primal rings. Let α be an endomorphism and δ an α derivation of a ring R. We prove that (1) If R is an (α, δ) -compatible and weakly 2-primal ring, then $R[x; \alpha, \delta]$ is weakly semicommutative; (2) If R is (α, δ) -compatible, then R is weakly 2-primal if and only if $R[x; \alpha, \delta]$ is weakly 2-primal.

Key words: (α, δ) -compatible ring, weakly 2-primal ring, weakly semicommutative ring, nil-semicommutative ring, Ore extension

2010 MR subject classification: 16S50, 16U20, 16U80

Document code: A

Article ID: 1674-5647(2016)01-0070-13 DOI: 10.13447/j.1674-5647.2016.01.05

1 Introduction

Throughout this paper, R denotes an associative ring with identity, α is an endomorphism of R and δ is an α -derivation of R, that is, δ is an additive map such that $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$ for $a, b \in R$. We denote by $R[x; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, the addition is defined as usual, and the multiplication subject to the reaction $xr = \alpha(r)x + \delta(r)$ for any $r \in R$. Particularly, if $\delta = 0_R$, we denote by $R[x; \alpha]$ the skew polynomial ring; if $\alpha = 1_R$, we denote by $R[x; \delta]$ the differential polynomial ring. For a ring R, we denote by nil(R) the set of all nilpotent elements of R, Nil_{*}(R) its lower nil-radical, Nil^{*}(R) its upper nil-radical and L-rad(R) its Levitzki radical. For a nonempty subset M of a ring R, the symbol $\langle M \rangle$ denotes the subring (may not with 1) generated by M.

Received date: June 17, 2014.

Foundation item: The NSF (11071097, 11101217) of China and the NSF (BK20141476) of Jiangsu Province. * Corresponding author.

E-mail address: wangyao@nuist.edu.cn (Wang Y), renyanlisx@163.com (Ren Y L).

Recall that a ring R is called reduced if it has no nonzero nilpotent elements; R is symmetric if abc = 0 implies acb = 0 for all $a, b, c \in R$; R is semicommutative if ab = 0implies aRb = 0 for all $a, b \in R$. In [1], semicommutative property is called the insertionof-factors-property, or IFP. There are many papers to study semicommutative rings and their generalization (see [2]–[5]). Liu and Zhao ([6], Lemma 3.1) has proved that if R is a semicommutative ring, then nil(R) is an ideal of R. Liang *et al.*^[5] called a ring R to be weakly semicommutative if ab = 0 implies $aRb \subseteq nil(R)$ for any $a, b \in R$. This notion is a proper generalization of semicommutative rings by Example 2.2 in [5]. According to $Chen^{[2]}$, a ring R is called nil-semicommutative if $ab \in nil(R)$ implies $aRb \subseteq nil(R)$ for any $a, b \in R$. A nil-semicommutative ring is weakly semicommutative, but the converse is not true by Example 2.2 in [2]. Recall that a ring R is 2-primal if $nil(R) = Nil_*(R)$. Hong *et al.*^[7] called a ring R to be locally 2-primal if each finite subset generates a 2-primal ring, and have shown that if R is a nil ring then R is locally 2-primal if and only if R is a Levitzki radical ring. Chen and $Cui^{[3]}$ called a ring R to be weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, that is, nil(R)=L-rad(R). Due to Marks^[8].

a ring R is called NI if $\operatorname{nil}(R) = \operatorname{Nil}^*(R)$. It is obvious that a ring R is NI if and only if $\operatorname{nil}(R)$ forms an ideal, if and only if $R/\operatorname{Nil}^*(R)$ is reduced. Hwang *et al.*^[9] considered basic structure and some extensions of NI rings, and Proposition 2.1 in [3] has presented their some characterizations. The following implications hold:

Reduced \Rightarrow Symmetric \Rightarrow Semicommutative \Rightarrow 2-primal \Rightarrow Locally 2-primal

 \Rightarrow Weakly 2-primal \Rightarrow NI-ring \Rightarrow Weakly semicommutative.

In general, each of these implications is irreversible (see [3], [7]).

According to Annin^[10], for an endomorphism α and an α -derivation δ , a ring R is said to be α -compatible if for each $a, b \in R$, $ab = 0 \Leftrightarrow a\alpha(b) = 0$. Moreover, R is called to be δ -compatible if for each $a, b \in R$, $ab = 0 \Rightarrow a\delta(b) = 0$. If R is both α -compatible and δ -compatible, R is called (α, δ) -compatible. Liang *et al.*^[5] have proved that if R is α -compatible semicommutative, then $R[x; \alpha]$ is weakly semicommutative. Chen and Cui^[3] have shown that if R is weakly 2-primal and α -compatible, then $R[x; \alpha]$ is weakly 2-primal and hence weakly semicommutative. In this paper, we extend respectively the above results to more general cases, the Ore extensions over weakly 2-primal rings, and generalize recent some related work on polynomial rings and skew polynomial rings. In particular, we show that if R is an (α, δ) -compatible and weakly 2-primal ring, then $R[x; \alpha, \delta]$ is a weakly semicommutative ring; if R is (α, δ) -compatible, then R is weakly 2-primal if and only if $R[x; \alpha, \delta]$ is weakly 2-primal. At the same time, we also extend a main result proved by Chen^[2] to the Ore extensions $R[x; \alpha, \delta]$ over weakly 2-primal ring, and obtain that if Ris an (α, δ) -compatible and weakly 2-primal ring, then $R[x; \alpha, \delta]$ is a nil-semicommutative ring.

In the following, for integers i, j with $0 \le i \le j, f_i^j \in \operatorname{End}(R, +)$ denotes the map which is the sum of all possible words in α , δ built with i letters α and j-i letters δ . For instance, $f_2^4 = \alpha^2 \delta^2 + \delta^2 \alpha^2 + \delta \alpha^2 \delta + \alpha \delta^2 \alpha + \alpha \delta \alpha \delta + \delta \alpha \delta \alpha$. In particular, $f_0^0 = 1, f_i^i = \alpha^i, f_0^i = \delta^i, f_{j-1}^j = \alpha^{j-1}\delta + \alpha^{j-2}\delta\alpha + \cdots + \delta\alpha^{j-1}$. For every $f_i^j \in \operatorname{End}(R, +)$ with $0 \le i \le j$, it has C_j^i

NO. 1