Normality Criteria of Meromorphic Functions

Wang Qiong¹, Yuan Wen-Jun², Chen Wei³ and Tian Hong-gen^{1,*}

(1. School of Mathematics Science, Xinjiang Normal University, Urumqi, 830054)

(2. School of Mathematics and Information Sciences, Guangzhou University, Guangzhou, 510006)

(3. School of Mathematics Sciences, Shandong University, Jinan, 250000)

Communicated by Ji You-qing

Abstract: In this paper, we consider normality criteria for a family of meromorphic functions concerning shared values. Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, n, k and d be four positive integers satisfying $m \ge n+2$ and $d \ge \frac{k+1}{m-n-1}$, and $a(\ne 0)$, b be two finite constants. Suppose that every $f \in \mathcal{F}$ has all its zeros and poles of multiplicity at least k and d, respectively. If $(f^n)^{(k)} - af^m$ and $(g^n)^{(k)} - ag^m$ share the value b for every pair of functions (f, g) of \mathcal{F} , then \mathcal{F} is normal in D. Our results improve the related theorems of Schwick (Schwick W. Normality criteria for families of meromorphic function. J. Anal. Math., 1989, **52**: 241–289), Li and Gu (Li Y T, Gu Y X. On normal families of meromorphic functions. J. Math. Anal. Appl., 2009, **354**: 421–425). Key words: meromorphic function, shared value, normal criterion **2010 MR subject classification**: 30D30, 30D45 **Document code**: A **Article ID**: 1674-5647(2016)01-0088-09

DOI: 10.13447/j.1674-5647.2016.01.07

1 Introduction and Main Results

Let **C** be the set of complex numbers, D be a domain in **C**, which means that D is a connected nonempty open subset of **C**. Let \mathcal{F} be a family of meromorphic functions defined in D. For $\{f, g\} \subset \mathcal{F}, \{a, b\} \subset \mathbb{P}^1 = \mathbf{C} \cup \{\infty\}$, we write $f = a \Rightarrow g = b$ $(f = a \Leftrightarrow g = b)$ if $f^{-1}(a) \subset g^{-1}(b)$ $(f^{-1}(a) = g^{-1}(b))$, and say that f and g share a ignoring multiplicities

Received date: Jan. 6. 2015.

Foundation item: The NSF (11461070, 11271090) of China, the NSF (S2012010010121, 2015A030313346) of Guangdong Province, and the Graduate Research, and Innovation Projects (XJGRI2015106) of Xinjiang Province. * Corresponding author.

E-mail address: wq1298592600@163.com (Wang Q), tianhg@xjnu.edu.cn (Tian H G).

(IM, for short) if $f^{-1}(a) = g^{-1}(a)$ (see [1]). Here, the family \mathcal{F} is said to be normal in D if any sequence of \mathcal{F} must contain a subsequence that locally uniformly spherically converges to a meromorphic function or ∞ in D (see [2]).

In 1989, Schwick^[3] proved a normality criterion:

Theorem 1.1 Let $k, n(\geq k+3)$ be two positive integers, and \mathcal{F} be a family of meromorphic functions defined in a domain D. If $(f^n)^{(k)} \neq 1$ for every function $f \in \mathcal{F}$, then \mathcal{F} is normal in D.

In 1998, Wang and Fang^[4] proved:

Theorem 1.2 Let $k, n \geq (k + 1)$ be two positive integers, and f be a transcendental meromorphic function. Then $(f^n)^{(k)}$ assumes every finite non-zero value infinitely often.

For families of meromorphic functions, the connection between normality and shared values has been studied frequently.

By the ideas of shared values, Li and Gu^[5] proved the following results:

Theorem 1.3 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, k, $n(\geq k+2)$ be two positive integers, and $a \neq 0$ be a finite complex number. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share a in D for every pair of functions $f, g \in \mathcal{F}$, then \mathcal{F} is normal in D.

In 2011, Liu and $\text{Li}^{[6]}$ studied Theorem 1.3, in which the value *a* was replaced by the fix-point *z*, and got the following result:

Theorem 1.4 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, k, $n(\geq k+1)$ be two positive integers. If $(f^n)^{(k)}$ and $(g^n)^{(k)}$ share z in D for every pair of functions $f, g \in \mathcal{F}$, then \mathcal{F} is normal in D.

Lately, some theorems in this area appear. Hu and Meng^[7], Jiang and Gao^[8] studied the functions of the form $f(f^{(k)})^n$. Ding *et al.*^[9] studied the functions of the form $f^m(f^{(k)})^n$ and Sun^[10] studied the form $P(f)(f^{(k)})^m$.

Naturally, we pose the following question:

Question Whether the form $(f^n)^{(k)} - af^m$ in above Theorems can have similar results?

In this paper, we prove the following theorems and deal with this question.

Theorem 1.5 Let \mathcal{F} be a family of meromorphic functions defined in a domain D, m, n, k be three positive integers satisfying $m \ge n + k + 3$, and $a(\ne 0)$, b be two finite complex constants. If $(f^n)^{(k)} - af^m \ne b$ for every functions f of \mathcal{F} , then \mathcal{F} is normal in D.

Whether the condition $m \ge n+k+3$ in Theorem 1.5 can be improved? We get the following results: