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Abstract: In this paper, we explore some issues related to adopting the Adomian

decomposition method (ADM) to solve partial differential equations (PDEs), par-

ticularly linear diffusion equations. Through a proposition, we show that extending

the ADM from ODEs to PDEs poses some strong requirements on the initial and

boundary conditions, which quite often are violated for problems encountered in en-

gineering, physics and applied mathematics. We then propose a modified approach,

based on combining the ADM with the Fourier series decomposition, to provide solu-

tions for those problems when these conditions are not met. In passing, we shall also

present an argument that would address a long-term standing “pitfall” of the original

ADM and make this powerful approach much more rigorous in its setup. Numeri-

cal examples are provided to show that our modified approach can be used to solve

any linear diffusion equation (homogeneous or non-homogeneous), with reasonable

smoothness of the initial and boundary data.
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1 Introduction

The Adomian decomposition method (ADM), as a powerful numerical approach initially

proposed by Adomian[1]–[4] in 1980s, has been successfully applied to solve various ordinary

differential equations (ODEs). And yet, its extension to solving partial differential equations
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(PDEs) are far less investigated and many issues remain to be resolved before the power-

fulness of this method can be further stretched into the territory of PDEs. In this paper,

we discuss the applicability of the ADM to the simplest PDE, the linear parabolic PDEs

with inhomogeneous terms and demonstrate, through a proposition, that one needs to be

careful in extending ADM to PDEs as there is a very strong requirement of the smoothness

of the boundary and initial data. On the other hand, quite a lot of problems frequently

encountered in engineering and applied mathematics do not have sufficient smoothness in

terms of boundary and/or initial conditions and a direct imposition of the ADM, as some

authors did, would lead to a wrong solution. For example, the solutions of Example 4 in [5]

and Examples 1 and 2 in [6] satisfy the given PDEs and initial conditions but they do not

satisfy the given boundary conditions. To rectify the problem, we have proposed a modified

approach, which combines the ADM and Fourier expansion and leads to a much robust

approach to solve linear PDEs.

Using ADM to solved ODEs has been extensively documented in the literature. The

method was initially proposed by Adomian[1]–[4] and then later extended to solve various

ODEs, ranging from single ones (see [7]) to systems of ODEs (see [8]), from ODEs with

variable coefficients (see [9]) to highly nonlinear ones (see [10]–[11]), and from deterministic

ODEs (see [12]) to stochastic equations (see [13]–[14]) or even nonlinear ODEs that exhibit

singular behavior at the origin (see [9]). One of the main advantages of the ADM is that the

convergence of the Adomian series solution has been proven in the context of its applications

in solving ODEs (see [15]–[20]).

On the other hand, the ADM has also been applied to solve various PDEs. For example,

PDEs with Dirichlet boundary conditions were studied in [21]–[23], and those with Neumann

boundary conditions were studied in [12]. In terms of PDEs with very strong application

backgrounds, Tatari et al.[24] applied the ADM to solve the Fokker-Planck equation, which is

frequently used in mathematical finance, while Inc and Cherruault[25] applied it to the KdV

(Korteweg-de Vries) equation, which appears frequently in mathematical physics and Arafa

and Rida[26] applied it to solve the nonlinear Schrödinger equation, which often governs

soliton propagation in optical fibers. In most of the papers showing ADM being applied

to solve PDEs with both initial and boundary conditions (e.g., [5]–[6], [27]–[28]), all given

boundary and initial conditions are composed of smooth functions. For example, using

smooth boundary conditions, Wazwaz[29] and Aly et al.[12] suggested some strategies for

finding exact solutions of nonlinear PDEs. There are also researchers who have applied ADM

to coupled nonlinear PDEs (see [30]–[31]) with smooth initial conditions. Unfortunately,

until now, there has been no attempt to get approximate or analytic solutions of PDEs,

using the ADM, with non-smooth boundary or initial conditions.

Despite some limited attempts to extend the ADM to solve PDEs, the application of

ADM to solve PDEs are relatively rare in comparison with their ODE counterparts and one

of the main reasons is the lack of theoretical studies in terms of guaranteeing the solution to

satisfy all the initial and boundary conditions. This is because when ADM is extended from

ODEs to PDEs, its characteristic of repeatedly integrating in one direction remains, which


