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Abstract: Khovanov type homology is a generalization of Khovanov homology.

The main result of this paper is to give a recursive formula for Khovanov type

homology of pretzel knots P (−n,−m,m). The computations reveal that the

rank of the homology of pretzel knots is an invariant of n. The proof is based

on a “shortcut” and two lemmas that recursively reduce the computational

complexity of Khovanov type homology.
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1 Introduction

Khovanov homology[1] is a modern and powerful invariant for knots and links related to the

representation theory, physics, and symplectic geometry. As a graded homology theory, it is

a categorification of the Jones polynomial. In [2], a new homology theory of knots and links

over a ring R, Khovanov type homology, is constructed from a Frobenius algebra, and its

corresponding geometric interpretation is obtained. The link homology theory is different

from the known natural generalizations (see [3]–[7]).

It is well known that the 3-strand pretzel knots are well-studied sources of examples in

the knot theory. Khaled[8] proved a recursion formula for the rational Khovanov homology
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of families of pretzel links P (p, r, r). Suzuki[9] calculated the rational Khovanov homology of

a class of pretzel knots P (p, q, r) by using the spectral sequence constructed by Turner[10].

Manion[11] gave a formula for the unreduced Khovanov homology over the rational numbers

of all 3-strand pretzel links. However, computing the generalized Khovanov homology over

R remains mysterious in many cases.

In this paper, we set out to calculate Khovanov type homology of infinite classes of

knots, pretzel knots P (−n,−m,m). We utilize the simplicity of the diagrams resulting from

resolving one of the crossings to make an inductive argument in terms of n. Thus, we provide

a recursive formula for Khovanov type homology of pretzel knots.

The organization of the coming sections is as follows. In Section 2, we give a brief

summary of Khovanov type homology and review a computational shortcut to Khovanov

homology. Similarly, we can use the “shortcut” to calculate Khovanov type homology. In

Section 3, after proving two lemmas of Khovanov type homology, we obtain a formula for

pretzel knots P (−n,−m,m).

2 Preliminary

2.1 Khovanov Type Homology

For a ring R, a (1+1) topological quantum field theory (TQFT for short, see [12]–[13]) which

is a functor on (1+1) cobordisms (see [5]) valued in the category R-module has been studied

in [1].

The authors firstly construct a Frobenius algebra (see [14]), which is a free R-module

over the basic ring of rank 2 generated by 1 and x.

To get a algebra structure, a multiplication m : A⊗A → A is given by

m(1⊗ 1) = 1, m(1⊗ x) = m(x⊗ 1) = x, m(x⊗ x) = hx.

For simplification, we abbreviate x⊗ x = hx by x2 = hx, where h ∈ R and hn−1 = 0 which

implies that xn = 0 for n ≥ 3.

To get a coalgebra structure, a comultiplication ∆ : A → A⊗A is given by

∆(1) = 1⊗ x+ x⊗ 1− h1⊗ 1, ∆(x) = x⊗ x.

We introduce a Z-grading on R by deg(h) = −2, deg(1) = 1, deg(x) = −1.

Consequently, given a link diagram D, the cube of resolutions is built from it, where

vertices of the cube are of all possible 0 and 1 resolutions of the crossings. The resolutions

are represented by the Kauffman states (see [15]) themselves as shown in Fig. 2.1. The

edges of the cube are certain given surfaces to which the appropriate signs are attached.

The entire cube is “summed” into a chain complex, C̄(D), in the appropriate geometric

category.

Fig. 2.1 The resolution 0 and 1 of a crossing


