Common Fixed Point Theorems and Q-property for Quasi-contractive Mappings under *c*-distance on TVS-valued Cone Metric Spaces without the Normality

PIAO YONG-JIE

(Department of Mathematics, College of Science, Yanbian University, Yanji, Jilin, 133002)

Communicated by Ji You-ging

Abstract: Fixed point and common fixed point results for mappings satisfying quasicontractive conditions expressed in the terms of c-distance on TVS-valued cone metric spaces (without the underlying cone which is not normal) are obtained, and Pproperty and Q-property for mappings in the terms of c-distance are discussed. Our results generalize and improve many known results.

Key words: TVS-valued cone metric space, quasi-contractive condition, common fixed point, P-property, Q-property

2010 MR subject classification: 47H05, 47H10, 54E40, 54H25 Document code: A

Article ID: 1674-5647(2016)03-0229-12 DOI: 10.13447/j.1674-5647.2016.03.05

Introduction and Preliminaries 1

Huang and Zhang^[1] have introduced the concepts of cone metric spaces, where the set of real numbers is replaced by an order Banach space. Du $et \ al.^{[2]-[10]}$ discussed the existence problems of fixed points and common fixed points for mappings defined on TVS-valued cone metric spaces, where the order Banach space is replaced by a topological vector space.

Fixed point results in metric spaces with the so-called w-distance were obtained for the first by Kada *et al.*^[11], where non-convex minimization problems were treated. Further results were given in [12]–[14]. The cone metric version of this notion (usually called a c-distance) was used in [15]-[16].

Wang and Guo^[17] obtained a fixed point theorem for a mapping in normal cone metric

Received date: July 2, 2015. Foundation item: The NSF (11361064) of China.

E-mail address: sxpyj@ybu.edu.cn (Piao Y J).

space under some contractive condition expressed in the terms of c-distance, and Djordjević $et \ al.^{[18]}$ also obtained fixed point and common fixed point results for mappings in TVS-valued non-normal cone metric spaces under contractive condition expressed in the terms of c-distance. Those results generalize the corresponding results in [11]–[16] and the related results.

Here, we discuss the existence problems of fixed points and common fixed points for mappings on TVS-valued non-normal cone metric spaces under quasi-contractive condition expressed in the terms of c-distance and P-property and Q-property. The obtained results generalize the conclusions in [17]–[18] and other corresponding fixed point and common fixed point theorems.

Let (E, τ) be a topological vector space (TVS), P_0 a nonempty subset of E. P_0 is said to be a cone whenever

- (i) P_0 is closed, nonempty and $P_0 \neq \{0\}$;
- (ii) $ax + by \in P_0$ for all $x, y \in P_0$ and real numbers $a, b \ge 0$;
- (iii) $P_0 \cap (-P_0) = \{0\}.$

In this paper, we always assume that the cone P_0 has a nonempty interior, i.e., $\operatorname{int} P_0 \neq \emptyset$ (such cones are called solid).

For a given cone $P_0 \subset E$, we define a partial ordering \leq with respect to P_0 by $x \leq y$ if and only if $y - x \in P_0$. x < y stands for $x \leq y$ and $x \neq y$, $x \ll y$ stands for $y - x \in int P_0$.

A cone P_0 is called normal if there exists a real number K > 0 such that for all $x, y \in E$,

$$0 \le x \le y \Longrightarrow \|x\| \le K\|y\|.$$

The least positive number K satisfying the above condition is called the normal constant of P_0 .

It is known that a metric space is a normal cone metric space with normal constant K = 1.

Definition 1.1 Let X be a nonempty set and E a TVS with solid cone P_0 . Suppose that the mapping $d: X \times X \to E$ satisfies

- (1) $0 \le d(x, y)$ for all $x, y \in X$, and d(x, y) = 0 if and only if x = y;
- (2) d(x, y) = d(y, x) for all $x, y \in X$;
- (3) $d(x, y) \leq d(x, z) + d(z, y)$ for all $x, z, y \in X$.

Then d is called a TVS-valued cone metric on X, (X, d) is called a TVS-valued cone metric space.

Definition 1.2 Let (X, d) be a TVS-valued cone metric space, $x \in X$ and $\{x_n\}_{n \in \mathbb{N}^+}$ a sequence in X. Then

(1) $\{x_n\}$ is a Cauchy sequence whenever for every $c \in E$ with $0 \ll c$ there exists an $N \in \mathbf{N}^+$ such that $d(x_m, x_n) \ll c$ for all n, m > N;

(2) $\{x_n\}$ converges to x whenever for every $c \in E$ with $0 \ll c$, there exists an $N \in \mathbf{N}^+$ such that $d(x_n, x) \ll c$ for all n > N. We denote this by $x_n \to x$ or $\lim x_n = x$;

(3) (X, d) is called complete if every Cauchy sequence in X is convergent.