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Abstract: Let α be a nonzero endomorphism of a ring R, n be a positive integer and

Tn(R,α) be the skew triangular matrix ring. We show that some properties related

to nilpotent elements of R are inherited by Tn(R,α). Meanwhile, we determine the

strongly prime radical, generalized prime radical and Behrens radical of the ring

R[x;α]/(xn), where R[x;α] is the skew polynomial ring.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity and α is a nonzero

endomorphism of R. For a given ring R, we use nil(R), Nil∗(R), Nil∗(R), L-rad(R) and

J(R) to denote the set of all nilpotent elements, the prime radical, the upper nilradical,

the Levitzki radical and the Jacobson radical of R, respectively. We denote by R[x;α] the

skew polynomial ring, whose elements are the polynomials over R, the addition is defined

as usual, and the multiplication subject to the relation xr = α(r)x for any r ∈ R. For a

positive integer n, the skew triangular matrix ring is defined as
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Tn(R,α) =





a0 a1 a2 . . . an−1

0 a0 a1 . . . an−2

0 0 a0 . . . an−3

...
...

...
. . .

...

0 0 0 . . . a0

 | ai ∈ R, i = 0, 1, · · · , n− 1


with addition pointwise and multiplication given by

a0 a1 a2 . . . an−1

0 a0 a1 . . . an−2

0 0 a0 . . . an−3

...
...

...
. . .

...

0 0 0 . . . a0





b0 b1 b2 . . . bn−1

0 b0 b1 . . . bn−2

0 0 b0 . . . bn−3

...
...

...
. . .

...

0 0 0 . . . b0

 =



c0 c1 c2 . . . cn−1

0 c0 c1 . . . cn−2

0 0 c0 . . . cn−3

...
...

...
. . .

...

0 0 0 . . . c0

 ,

where

ci = a0α
0(bi) + a1α

1(bi−1) + · · ·+ aiα
i(b0), 0 ≤ i ≤ n− 1.

We denote elements of Tn(R,α) by (a0, a1, · · · , an−1). It is easy to verify that the

σ : Tn(R,α) −→ R[x;α]/(xn) defined by σ(a0, a1, · · · , an−1) = a0+a1x+ · · ·+an−1x+(xn)

is a ring isomorphism, where ai ∈ R, 0 ≤ i ≤ n− 1, (xn) is the ideal generated by xn.

The triangular matrix ring Tn(R) and the quotient R[x]/(xn) of a polynomial ring R[x]

has attracted a lot of attention (see [1]–[3]). Nasr-Isfahani and Moussavi[4] discussed their

right mininjective, right T -nilpotent and right Kasch property. In recent, Nasr-Isfahani[5]

extended the study to the skew triangular matrix ring Tn(R,α) and gave their prime, prim-

itive and maximal ideals. We continue in this paper investigate some properties of Tn(R,α)

and determine the strongly prime radical, generalized prime radical and Behrens radicals of

the quotient ring R[x;α]/(xn).

2 Properties Related to Nilpotent Elements

Recall that a ring R is reduced if R has no nonzero nilpotent elements, R is an NI ring if

nil(R) = Nil∗(R), R is 2-primal if nil(R) = Nil∗(R), R is weakly 2-primal if nil(R) = L-

rad(R), and R is locally 2-primal if each finite subset generates a 2-primal ring. A ring R

is called nil-semicommutative if for every a, b ∈ R, ab ∈ nil(R) implies aRb ⊆ nil(R), and

R is called weakly semicommutative if for any a, b ∈ R, ab = 0 implies aRb ⊆ nil(R). The

following implications hold:

reduced ⇒ 2-primal ⇒ locally 2-primal ⇒ weakly 2-primal ⇒ NI

⇒ nil-semicommutative ⇒ weakly semicommutative.

In general, each of these implications is irreversible (see [6]).

Observe that nil(Tn(R,α)) = (nil(R), R, · · · , R), we have that a ring R is reduced if and

only if

nil(R[x;α]/(xn)) = Rx+ · · ·+Rxn−1 + (xn).


