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Abstract: In this article, we introduce and study the concept of n-Gorenstein in-

jective (resp., n-Gorenstein flat) modules as a nontrivial generalization of Gorenstein

injective (resp., Gorenstein flat) modules. We investigate the properties of these mod-

ules in various ways. For example, we show that the class of n-Gorenstein injective

(resp., n-Gorenstein flat) modules is closed under direct sums and direct products for

n ≥ 2. To this end, we first introduce and study the notions of n-injective modules

and n-flat modules.
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1 Introduction

Let R be a ring. A left R-module N is called Gorenstein injective if there is a Hom(Inj, −)

exact exact sequence

· · · → E1 → E0 → E0 → E1 → · · ·

of injective left R-modules such that N = ker(E0 → E1), where Inj stands for the class of

all injective left R-modules (see [1]). A right R-module M is called Gorenstein flat if there

is a −⊗ Inj exact exact sequence

· · · → F1 → F0 → F 0 → F 1 → · · ·
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of flat right R-modules such that M=ker(F 0 → F 1) (see [2]). Gorenstein injective and

Gorenstein flat modules have been studied by many authors (see [1]–[5] and so on). These

modules have nice properties when the ring in question is n-Gorenstein (a ring R is called

n-Gorenstein if R is a left and right Noetherian ring with self-injective dimension at most n

for an integer n ≥ 0 on either side). For example, if R is n-Gorenstein and G is a Gorenstein

injective left (right) R-module, then G+ is a Gorenstein flat right (left) R-module; if R is

Gorenstein, then arbitrary products and sums of Gorenstein flat modules are Gorenstein

flat. However, these results are not true over general rings (see [6]).

The main purpose of this paper is to extend some Gorenstein homological properties over

Noetherian rings or coherent rings to any ring. To this end, we introduce a generalization of

Gorenstein injective (resp., Gorenstein flat) modules which forms a class closed under direct

sums (resp., direct products) over any ring. These modules are called n-Gorenstein injective

(resp., n-Gorenstein flat) modules. Therefore, although the direct sum (resp., direct prod-

uct) of Gorenstein injective (resp., Gorenstein flat) modules need not be Gorenstein injective

(resp., Gorenstein flat) in general, the direct sum (resp., direct product) of Gorenstein in-

jective (resp., Gorenstein flat) modules is always 2-Gorenstein injective (resp., 2-Gorenstein

flat). And an R-module M is −1-Gorenstein injective (−1-Gorenstein flat) if and only if M

is Gorenstein injective (Gorenstein flat). We study the properties of n-Gorenstein injective

modules and n-Gorenstein flat modules over any ring. For example, it is shown that a right

R-module M is n-Gorenstein flat if and only if there is a − ⊗ nPI exact exact sequence

0 → M → F 0 → F 1 · · · with each F i n-flat and Tor1(M, E) = 0 for all n-presented injective

left R-modules E and a left R-module M is n-Gorenstein injective if and only if there is a

Hom(nPI, −) exact exact sequence · · ·E1 → E0 → M → 0 with each Ei n-injective and

Ext1(E, M) = 0 for all n-presented injective left R-modules E, where nPI denotes the

class of all n-presented injective left R-modules. We prove that M+ is n-Gorenstein flat for

any n-Gorenstein injective left R-module M with n ≥ 2 over any ring R. We also show that

RR is n-injective if and only if every left R-module is n-Gorenstein injective.

Let us recall some known notions and facts needed in the sequel.

Let M and N be R-modules. M+ = HomZ(M, Q/Z) denotes the character module

of M . Hom(M, N) (resp., Extn(M, N)) means HomR(M, N) (resp., ExtnR(M, N)), and

similarly M ⊗N (resp., Torn(M, N)) denotes M ⊗R N (resp., TorRn (M, N)) for an integer

n ≥ 1.

Let C be a class of R-modules and M an R-module. Recall that a homomorphism ϕ :

C → M is a C -precover of M if C ∈ C and the abelian group homomorphism Hom(C ′, ϕ) :

Hom(C ′, C) → Hom(C ′, M) is surjective for every C ′ ∈ C (see [7]). A C -precover C :

C → M is said to be a C -cover of M if every endomorphism g : C → C such that ϕg = ϕ

is an isomorphism. Dually, we have the definitions of a C -preenvelope and a C -envelope.

C -covers (C -envelopes) may not exist in general, but if they exist, they are unique up to

isomorphism.

Let R be a ring and n a nonnegative integer. Following Costa[8], a left R-module is called


