Subsurface 1-distance of the Handlebody

SUN DONG-QI

(College of Science, Harbin Engineering University, Harbin, 150001)

Communicated by Lei Feng-chun

Abstract: For a handlebody H with $\partial H = S$, let $F \subset S$ be an essential connected subsurface of S. Let $\mathcal{C}(S)$ be the curve complex of S, $\mathcal{AC}(F)$ be the arc and curve complex of F, $\mathcal{D}(H) \subset \mathcal{C}(S)$ be the disk complex of H and $\pi_F(\mathcal{D}(H)) \subset \mathcal{AC}(F)$ be the image of $\mathcal{D}(H)$ in $\mathcal{AC}(F)$. We introduce the definition of subsurface 1-distance between the 1-simplices of $\mathcal{AC}(F)$ and show that under some hypothesis, $\pi_F(\mathcal{D}(H))$ comes within subsurface 1-distance at most 4 of every 1-simplex of $\mathcal{AC}(F)$.

Key words: handlebody, curve complex, arc and curve complex, subsurface 1-distance

2010 MR subject classification: 57M99 **Document code:** A **Article ID:** 1674-5647(2016)04-0375-08 **DOI:** 10.13447/j.1674-5647.2016.04.09

1 Introduction

In 1981, Harvey^[1] introduced the curve complex $\mathcal{C}(S)$ of a surface S which is a finitedimensional simplicial complex, and it was intended to capture some properties of combinatorial topology of S. Hempel^[2] applied it to study the distance of Heegaard splittings of 3-manifolds. See [3] for a survey that gives a good account of the history of the mathematics of the curve complex, continuing up to the recent advance.

Arc and curve complex of a surface F is another complex of F which can be known as the generalization of curve complex of F. Johnson^[4] applied it to show that if the subsurface distance of a Heegaard splitting is large, then any other Heegaard surface also contains this subsurface. Li^[5] proved that under some conditions, if the 3-manifold M is not a I-bundle of surface S, then the image of disk complex has diameter at most 6 in $\mathcal{AC}(S)$.

Distance of the Heegaard splittings of a 3-manifold is the distance between 0-simplex of curve complex $\mathcal{C}(S)$. We introduced the concept of a 2-path between two 1-simplices in $\mathcal{C}(S)$ and proved that $\mathcal{C}(S)$ is P^1 -connected (see [6]). Using the 2-path, we defined the 1-distance

Received date: Dec. 14, 2015.

Foundation item: The NSF (11426076) of China.

E-mail address: sundq1029@hrbeu.edu.cn (Sun D Q).

In this article, we introduce the subsurface 1-distance between 1-simplices of $\mathcal{AC}(F)$ and discuss the upper bound of subsurface 1-distance under some hypothesis. In Section 2, we give some basic definitions. In Section 3, we introduce the subsurface 1-distance between 1-simplices of $\mathcal{AC}(F)$ and prove the main theorem.

2 Preliminaries

In this section we review some basic definitions. The definitions and terminologies not mentioned here are standard, see [7].

A simplicial complex consists of a family of vertices and a family of simplices. Simplices are non-empty finite sets of vertices, subject only to the following two conditions: a nonempty subset of a simplex σ is a simplex (which is called a face of σ); every vertex belongs to some simplex. Let $\sigma = \{v_0, v_1, \dots, v_p\}$ be a simplex. p is called the dimension of σ , and is denoted by dim σ , i.e., dim σ =the number of the vertices in it minus 1. A 1-dimensional simplex is also called an edge. For a simplex σ , we denote the set of vertices of σ by vet (σ) .

Definition 2.1 Let $S = S_{g,b}$ be a genus g surface with b boundary components. The curve complex C(S) is defined as follows: The vertices of C(S) are the isotopy classes of non-trivial circles on S. A simplex of C(S) is a set of vertices $\{\gamma_0, \gamma_1, \dots, \gamma_p\}$ such that $\gamma_0 = \langle C_0 \rangle$, $\gamma_1 = \langle C_1 \rangle, \dots, \gamma_p = \langle C_p \rangle$ for a collection of pairwise disjoint and non-parallel circles C_0 , C_1, \dots, C_p .

Clearly, $\mathcal{C}(S_{g,b}) = \emptyset$ if g = 0 and b = 0, 1, 2 or 3; dim $S_{1,0} = 0$; for the other cases of g and b, dim $\mathcal{C}(S_{g,b}) = 3g - 4 + b$.

Definition 2.2 Let H be a handlebody with $\partial H = S$. Let $\mathcal{D}(H)$ be the subcomplex of $\mathcal{C}(S)$ with each vertex of $\mathcal{D}(H)$ corresponding to a curve that bounds a compressing disk in H. The $\mathcal{D}(H)$ is called the disk complex of H.

Definition 2.3 Let $S = S_{g,b}$ be a genus g surface with b boundary components. The arc and curve complex $\mathcal{AC}(S)$ is defined as follows: The vertices of $\mathcal{AC}(S)$ are the isotopy classes of essential (non-peripheral) simple closed curves and properly embedded arcs on S. A simplex of $\mathcal{AC}(S)$ is a set of vertices $\{\gamma_0, \gamma_1, \dots, \gamma_p\}$ such that $\gamma_0 = \langle C_0 \rangle, \gamma_1 = \langle C_1 \rangle, \dots, \gamma_p = \langle C_p \rangle$ for a collection of pairwise disjoint and non-parallel essential circles or arcs C_0, C_1, \dots, C_p .

If S is an annulus, then there are no essential closed curves, and the isotopy classes of essential arcs should have taken rel endpoints.

In this article, we do not distinguish between the vertex of $\mathcal{C}(S)(\mathcal{AC}(S))$ and its representation element.

If F is a connected proper essential subsurface in S which is not an annulus, then there is a map

$$\pi_F: \mathcal{C}^0(S) \to \mathcal{AC}^0(F) \cup \{\phi\}$$