On ∂-reducible 3-manifolds Which Admit Complete Surface Systems

Zhao Yan^{1,2}, Lei Feng-Chun¹ and Li Feng-Ling¹

(1. School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024)

(2. College of Mathematics and Physics, Bohai University, Jinzhou, Liaoning, 121013)

Abstract: In the present paper, we consider a class of compact orientable 3-manifolds with one boundary component, and suppose that the manifolds are ∂ -reducible and admit complete surface systems. One of our main results says that for a compact orientable, irreducible and ∂ -reducible 3-manifold M with one boundary component F of genus n > 0 which admits a complete surface system S', if \mathcal{D} is a collection of pairwise disjoint compression disks for ∂M , then there exists a complete surface system S for M, which is equivalent to S', such that \mathcal{D} is disjoint from S. We also obtain some properties of such 3-manifolds which can be embedded in S^3 .

Key words: complete surface system, ∂ -reducibility, Heegaard splitting

2010 MR subject classification: 57M25, 55Q20

Document code: A

Article ID: 1674-5647(2017)03-0215-08

DOI: 10.13447/j.1674-5647.2017.03.03

1 Introduction

Let $\mathcal{J} = \{J_1, \dots, J_n\}$ be a collection of pairwise disjoint simple closed curves on a connected orientable closed surface S of genus n. If the surface obtained by cutting S open along \mathcal{J} is a 2n-punctured 2-sphere, we call \mathcal{J} a complete curve system (or simply, CCS). Two CCSs on S are equivalent if one can be obtained from another via finite number of band moves (defined in Section 2) and isotopies.

Let M be a compact orientable 3-manifold with one boundary component F, and $S = \{S_1, \dots, S_n\}$ a collection of n pairwise disjoint connected orientable surfaces properly embedded in M. If $\partial S = \{\partial S_1, \dots, \partial S_n\}$ is a CCS on F, we call S a complete surface system (or simply, CSS) for M. Two CSSs S_1 and S_2 for M are equivalent if ∂S_1 and ∂S_2 are equivalent on F.

It is well known that any two complete disk systems in a handlebody are equivalent, that

Received date: Feb. 4, 2016.

Foundation item: The NSF (11329101, 11431009, 11329101, 11471151 and 11401069) of China and the Fundamental Research Funds (DUT16LK40) for the Central Universities.

E-mail address: zhaoyan_jinzh@126.com (Zhao Y).

is, the equivalent classes of complete disk systems for a handlebody are unique. Clearly, a complete system of disks for a handlebody H_n of genus n is a CSS for H_n . By Corollary 1.4 in [1], the complete disk systems are the only CSSs in a handlebody H_n .

In this paper, we consider a class of compact orientable 3-manifolds with one boundary component, and suppose that the manifolds are ∂ -reducible and admit CSSs. One of our main results says that for a compact orientable, irreducible and ∂ -reducible 3-manifold Mwith one boundary component F of genus n > 0 which admits a CSS S', if \mathcal{D} is a collection of pairwise disjoint compression disks for ∂M , then there exists a CSS S for M, which is equivalent to S', such that \mathcal{D} is disjoint from S. We also obtain some properties of such 3-manifolds which can be embedded in S^3 .

The paper is organized as follows. Section 2 contains some necessary preliminaries. In Section 3, we prove one of the main results mentioned as above, and in Section 4, we obtain some properties of such 3-manifolds which are 3-submanifolds of S^3 .

2 Preliminaries

along γ .

The terminology and definitions used in the paper are all standard, see for example, refer to [2]-[3].

2.1 Complete Surface Systems for 3-manifolds

In this part, we introduce some definitions on complete surface systems for 3-manifolds.

Definition 2.1 Let $S = S_n$ be a closed orientable surface of genus n. A collection of n pairwise disjoint simple closed curves \mathcal{J} on S is called a complete curve system (or simply, CCS) for S if the surface obtained by cutting S open along \mathcal{J} is a 2n-punctured sphere.

Definition 2.2 Let $S = S_n$ be a closed orientable surface of genus $n, n \ge 2$.

(1) Let J_1 , J_2 be two disjoint essential simple closed curves on S. Let γ be a simple arc on S with one endpoint lying in J_1 , and another endpoint lying in J_2 , and the interior of γ is disjoint from J_1 and J_2 . Let $P = N(J_1 \bigcup \gamma \bigcup J_2)$ be a compact regular neighborhood of $J_1 \bigcup \gamma \bigcup J_2$ on S. Denote the component of ∂N , which is parallel to neither J_1 nor J_2 on P, by $J_1 \#_{\gamma} J_2$, and call it the band sum of J_1 and J_2 along γ .

(2) Let $\mathcal{J} = \{J_1, \dots, J_n\}$ be a CCS on S. For $1 \leq i < j \leq n$, let γ be a simple arc on S with one endpoint lying in J_i , and another endpoint lying in J_j , and the interior of γ is disjoint from $\bigcup_{1 \leq k \leq n} J_k$. Let J_{ij} be the band sum of J_i and J_j along γ . By isotopy, we may assume that J_{ij} is disjoint from the curves in \mathcal{J} . Set $\mathcal{J}' = (\mathcal{J} \setminus J_i) \bigcup \{J_{ij}\}$ or $(\mathcal{J} \setminus J_j) \bigcup \{J_{ij}\}$. It is easy to see that \mathcal{J}' is still a CCS for S. We call \mathcal{J}' an elementary band move of \mathcal{J}

(3) Two CCSs C_1 and C_2 on S are called equivalent if one can be obtained from another by a finite number of elementary band moves and isotopies.