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Abstract: In this paper, we study the basis of augmentation ideals and the quotient

groups of finite non-abelian p-group which has a cyclic subgroup of index p, where

p is an odd prime, and k is greater than or equal to 3. A concrete basis for the

augmentation ideal is obtained and then the structure of its quotient groups can be

determined.
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1 Introduction

Let G be a finite group, ZG be its integral group ring and the kernel ∆(G) of the augmenta-

tion homomorphism ZG → Z,
∑
g∈G

agg →
∑
g∈G

ag, the augmentation ideal of ZG. It is clear

that ∆(G) is the free abelian group on the elements [g] = g − 1 for all g ∈ G modulo the

relation [1] = 0. The nth power ideal ∆n(G) := (∆(G))n of the augmentation ideal ∆(G)

is generated as an abelian group by the products [g1, · · · , gn] = [g1] · · · [gn], g1, · · · , gn ∈ G.

It is well known that if G is a finite group of order r, then ∆n(G) is a free Z-module of

rank r − 1 for any n ≥ 1 (see [1], p.122). The augmentation quotient group is defined as

Qn(G) = ∆n(G)/∆n+1(G).
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The problem of determining the structure of augmentation ideals ∆n(G) and quotient

groups Qn(G) is an interesting topic in group ring theory. For abelian groups many works

have been done (see [1]–[6]). In [2], Hales and Passi (see also [3]) proved that for a finite

abelian group G, there exists a number N such that for all n ≥ N , Qn(G) is isomorphic

to QN (G). However, it is usually difficult to write down explicitly a basis of ∆n(G) for an

arbitrary finite non-abelian group, even for the non-abelian p-group.

For non-abelian finite p-group, if p = 2 and every positive integer k is greater than or

equal to 4, then there are exactly four isomorphism classes of non-abelian groups of order

2k which have a cyclic subgroup of index 2. The structure of augmentation quotient groups

of all of which are well established, the dihedral group (see [7]), the generalized quaternion

group (see [8]), the semidihedral group (or the quasidihedral group) and Mk(2) (see [9]).

If p ̸= 2 and every positive integer k is greater than or equal to 3, then there is just one

isomorphism class of non-abelian groups of order pk which have a cyclic subgroup of index

p. Its presentation is given as follows:

⟨a, b | ap
k−1

= 1, bp = 1, b−1ab = a1+pk−2

⟩.
We denote it by M . The current paper investigates the structure of the augmentation ideal

and quotient group of the non-abelian p-group M . We prove that for n ≥ N = (p− 1)k+1,

Qn(M) ∼= QN (M) ∼= Zpk−2 ⊕ Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
(p−1)k+2

.

We start with some known results. In [4], Parmenter proved the following theorem.

Theorem 1.1 Let G = ⟨g⟩ be cyclic of order m. Then the set

Bn(G) = {(g − 1)n, (g − 1)n+1, · · · , (g − 1)n+m−2}
is a Z-basis for ∆n(G).

Let G be a finite group, and denote by G1 = [G, G] the commutator subgroup of G. For

i ≥ 1, define Gi = [G, Gi−1]. Then we have the sequence: G = G0 ◃ G1 ◃ G2 ◃ · · · . In [8],

Zhou and You gave the following theorem.

Theorem 1.2 g − 1 ∈ ∆i+1(G), if g ∈ Gi.

2 Structure of Qn(M) for the Non-abelian p-group M

Let

M = ⟨a, b | ap
k−1

= 1, bp = 1, b−1ab = a1+pk−2

⟩

be a finite non-abelian p-group of order pk which have a cyclic subgroup of index p, where

p ̸= 2, k ≥ 3. It is not hard to see that

M = {btau | 0 ≤ t ≤ p− 1, 0 ≤ u ≤ pk−1 − 1},
and

btau · biaj = bt+iau(1+pk−2)i+j .

Consequently, we have


