The Expression of Slow-growing Meromorphic Functions Sharing One Value CM with Their Derivatives

Xu Ai-zhu¹ and Chen Sheng-jiang^{2,*}

Department of Mathematics, Ningde Normal University, Ningde, Fujian, 352100)
 Department of Mathematics, Fujian Normal University, Fuzhou, 350007)

Communicated by Ji You-qing

Abstract: In this paper, we study the relations between meromorphic functions and their derivatives with one shared values, and obtain a concrete expression of meromorphic functions of zero order that share one value CM with their derivatives by a new method. Our main result is the supplementary of a related result due to Li and Yi (Li X M, Yi H X. Uniqueness of meromorphic functions sharing a meromorphic function of a small order with their derivatives. *Ann. Polon. Math.*, 2010, **98**(3): 201–219).

Key words: meromorphic, derivative, shared value 2010 MR subject classification: 30D35 Document code: A Article ID: 1674-5647(2017)04-0377-06 DOI: 10.13447/j.1674-5647.2017.04.10

1 Introduction and Main Results

A meromorphic function always mean meromorphic in the whole complex plane in this paper. We say that two meromorphic functions f(z) and g(z) share a finite value a IM (ignoring multiplicities) provided that f - a and g - a have the same zeros. If f - a and g - a have the same zeros with the same multiplicities, then we say f(z) and g(z) share the value a CM (counting multiplicities). We assume that the reader is familiar with the fundamental concepts of Nevanlinna's value distribution theory, e.g., [1] and [2], and in particular with the most usual of its symbols: m(r, f), N(r, f), T(r, f) and so on.

Brück^[3] seems to be the first one who considered the relations between meromorphic

Received date: April 8, 2017.

Foundation item: The NSF (11301076) of China, the NSF (2014J01004) of Fujian Province, the SRP (JA15562) of Fujian Provincial Education Department, and the Foundation (2014Q64) of NDNU.
* Corresponding author.

E-mail address: xuaizhu@126.com (Xu A Z), ndsycsj@126.com (Chen S J).

functions and their derivatives concerning one shared value, and presented the following well-known conjecture in 1996.

Brück Conjecture^[3] Let f be a nonconstant entire function such that the hyper-order $\rho_2(f)$ of f is not a positive integer and $\rho_2(f) < \infty$. If f and f' share a finite value a CM, then $\frac{f'-a}{f-a} = c$ for some nonzero constant c.

Here, $\rho_2(f) = \limsup_{r \to \infty} \frac{\log^+ \log^+ T(r, f)}{\log r}.$

Brück^[3] showed that the conjecture is true when a = 0, and Gundersen and Yang^[4] proved the case that f is of finite order. The case $\rho(f) = \infty$ and $\rho_2(f) < \frac{1}{2}$ was be proved by Chen and Shou^[5], where $\rho(f) = \limsup_{r \to \infty} \frac{\log^+ T(r, f)}{\log r}$.

Although the Brück's Conjecture is still open by now, it has induced many papers to investigate the related uniqueness problems which are analogue to this conjecture.

In 1999, Yang^[6] proved the following result.

Theorem 1.1^[6] Let f be a nonconstant entire function of finite order, a be a finite nonzero constant, and k be a positive integer. If f and $f^{(k)}$ share a CM, then $f^{(k)} - a = c(f-a)$ for some nonzero complex number c.

Chang and Zhu^[7] replaced the shared-value by a meromorphic function and proved the next result.

Theorem 1.2^[7] Let f and a be two meromorphic functions such that f and a have finitely many poles, and such that f and a have no common poles. If f - a and f' - a share 0 CM, and if $\rho(a) < \rho(f) < \infty$, then f' - a = c(f - a) for some nonzero constant c.

Later, Li and Yi^[8] improved Theorem 1.2 to the next result.

Theorem 1.3([8], Theorem 1.2) Let f and $a \not\equiv 0$ be two meromorphic functions such that f and a have finitely many poles, and such that f and a have no common poles. If $\rho(a) < \rho(f) < \infty$ and if f - a and $f^{(k)} - a$ share 0 CM, where $k \geq 1$ is an integer, then $f^{(k)} - a = c(f - a)$ for some nonzero constant c.

In [7] and [8], the authors showed by an example that the condition " $\rho(a) < \rho(f)$ " cannot be replaced by " $\rho(a) = \rho(f)$ ". Let $f(z) = e^{2z} - (z-1)e^z$ and $a(z) = e^{2z} - ze^z$. Then we can verify that f - a and f' - a share 0 CM and $f' - a = e^z(f - a)$.

However, by an obvious observation, we can find that the order of f in Theorems 1.2 and 1.3 is strictly greater than 0. Thus, it is interesting to ask:

Question 1.1 Suppose that f is a meromorphic function with at most finitely many poles such that $\rho(f) = 0$. What can be said if f and $f^{(k)}$ share a finite nonzero complex value a CM?