One Parameter Deformation of Symmetric Toda Lattice Hierarchy

XIONG ZHEN

(Department of Mathematics and Computer, Yichun University, Yichun, Jiangxi, 336000)

Communicated by Du Xian-kun

Abstract: In this paper, we study one parameter deformation of full symmetric Toda hierarchy. This deformation is induced by Hom-Lie algebras, or is the applications of Hom-Lie algebras. We mainly consider three kinds of deformation, and give solutions to deformations respectively under some conditions.

Key words: Hom-Lie algebra, deformation, symmetric Toda hierrchy

2010 MR subject classification: 17B99, 55U15

Document code: A

Article ID: 1674-5647(2018)01-0047-07

DOI: 10.13447/j.1674-5647.2018.01.05

1 Introduction

Consider the following equation given by

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{L} = \boldsymbol{B}\boldsymbol{L} - \boldsymbol{L}\boldsymbol{B} = [\boldsymbol{B}, \ \boldsymbol{L}], \tag{1.1}$$

where L is an $n \times n$ symmetric real tridiagonal matrix, and B is the skew symmetric matrix obtained from L by

$$\boldsymbol{B} = \boldsymbol{L}_{>0} - \boldsymbol{L}_{<0},$$

where $L_{>0(<0)}$ denotes the strictly upper (lower) triangular part of L. In order to study the Toda lattice of statistical mechanics, the equation (1.1) was introduced by Flaschka^[1], and this further was studied by Kodama *et al.*^{[2],[3]}.

The notion of Hom-Lie algebras was introduced by Hartwig *et al.*^[4] as part of a study of deformations of the Witt and the Virasoro algebras. In a Hom-Lie algebra, the Jacobi identity is twisted by a linear map, called the Hom-Jacobi identity. Some q-deformations of the Witt and the Virasoro algebras have the structure of a Hom-Lie algebra (see [4] and [5]). Because of close relation to discrete and deformed vector fields and differential calculus

Received date: Sept. 9, 2016.

Foundation item: The Science and Technology Project (GJJ161029) of Department of Education, Jiangxi Province.

E-mail address: 205137@jxycu.edu.cn (Xiong Z).

(see [4], [6] and [7]), more people pay special attention to this algebraic structure and their representations (see [8] and [9]).

We give an application of Hom-Lie algebras. Define a smooth map

 $\beta: R_1 \longrightarrow GL(V), \qquad \beta(s) \in GL(V),$

where R_1 is a subset of \mathbf{R} , $s \in R_1$. In this paper, $R_1 = \mathbf{R} \setminus \{0\}$, or $R_1 = \mathbf{R}$.

We mainly consider the following system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{L} = \boldsymbol{\beta}(s)\boldsymbol{B}\boldsymbol{\beta}(s)^{-1}\boldsymbol{L}\boldsymbol{\beta}(s)^{-1} - \boldsymbol{\beta}(s)\boldsymbol{L}\boldsymbol{\beta}(s)^{-1}\boldsymbol{B}\boldsymbol{\beta}(s)^{-1} = [\boldsymbol{B}, \ \boldsymbol{L}]_{\boldsymbol{\beta}(s)}, \quad (1.2)$$

where $s \in R_1$, and s is not dependent on variable t. $[\cdot, \cdot]_{\beta(s)}$ is just a Hom-Lie bracket, and $(\mathfrak{gl}(V), [\cdot, \cdot]_{\beta(s)}, \operatorname{Ad}_{\beta(s)})$ is a Hom-Lie algebra (see [9]), where $\operatorname{Ad}_{\beta(s)}(L) = \beta(s)L\beta(s)^{-1}$.

We study system (1.2) which is based on the following points:

(1) (1.2) is one parameter deformation of (1.1). Deformation theory is a very important field in singularity theory and bifurcation theory, and has many applications in science and engineering (see [10] and [11]).

(2) (1.2) is equivariant under the action of Lie group

 $\{\mathrm{Ad}_{\boldsymbol{\beta}(s)} \mid s \in R_1\} : \mathrm{Ad}_{\boldsymbol{\beta}(s)} \circ [\boldsymbol{B}, \boldsymbol{L}]_{\boldsymbol{\beta}(s)} = [\mathrm{Ad}_{\boldsymbol{\beta}(s)}(\boldsymbol{B}), \mathrm{Ad}_{\boldsymbol{\beta}(s)}(\boldsymbol{L})]_{\boldsymbol{\beta}(s)}.$

This kind of differential equations is very important in equation theory and bifurcation theory (see [10] and [11]).

(3) For a Hom-Lie algebra $(\mathfrak{gl}(V), [\cdot, \cdot]_{\beta(s)}, \operatorname{Ad}_{\beta(s)})$, when $\beta(s) = I_n$, it is just a Lie algebra $(\mathfrak{gl}(V), [\cdot, \cdot])$, where I_n is the $n \times n$ identity matrix.

The general framework is organized as follows: we first introduce the relevant definitions: one parameter deformation, Γ -equivariant and so on; then, we give definitions of $\beta(s)$ and prove that $\{\operatorname{Ad}_{\beta(s)} \mid s \in R_1\}$ is a Lie group. Second, we give three kinds of one parameter deformation of (1.1). Then, we study these deformations respectively and give solutions. At last, some problems are given.

2 Preliminaries

We first give some definitions, one can find these definitions easily in [10] and [11].

Definition 2.1 An equation

$$g(x, s) = 0,$$

where x is an unknown variable, and the equation depends on an parameter $s \in \mathbf{R}$. For a fixed s_0 , let $g_1(x) = g(x, s_0)$. Then we call g(x, s) is one parameter deformation of $g_1(x)$.

Definition 2.2 A smooth map $g : \mathbf{R}^n \times \mathbf{R} \longrightarrow \mathbf{R}^n$ is Γ -equivariant, if for any $\gamma \in \Gamma$, Γ is a Lie group, we have

$$g(\gamma x, s) = \gamma g(x, s),$$

where γx is the Lie group Γ action on \mathbf{R}^n .