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Abstract: Let H be a finite-dimensional weak Hopf algebra over a field k and A

an associative algebra, and A#σH a weak crossed product. In this paper, a spectral

sequence for Ext is constructed which yields an estimate for cotorsion dimension of

A#σH in terms of the corresponding data for H and A.
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1 Introduction

In 1996, Böhm and Szlachányi[1] introduced weak bialgebras (or weak Hopf algebras) as a

generalization of ordinary bialgebras (or Hopf algebras). A general theory for these objects

was subsequently developed in Böhm et al.[2]. Briefly, the axioms of a weak Hopf algebra

are the same as the ones for a Hopf algebra, except that the coproduct of the unit, the

product of the counit and the antipode conditions are replaced by weaker properties. The

main motivation for studying weak Hopf algebras comes from quantum field theory, operator

algebras and representation theory. It has turned out that many results of classical Hopf

algebra theory can be generalized to weak Hopf algebras. Shen[3] extended the theory of

crossed products were introduced independently by Blattner and Montgomery[4], Doi and

Takeuchi[5] to more general Hopf structure: weak Hopf algebras. At the categorical level,

Alonso Álvarez and González Rodŕıguez[6] introduced the notion of a weak crossed product

and Alonso Álvarez et al.[7] investigated weak cleft theory and weak Galois extensions for

weak Hopf algebras (see [8] and [9]).
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In 2005, Mao and Ding[10] introduced the cotorsion dimension of modules and rings.

Recently, Chen et al.[11] discussed the cotorsion dimension of the smash product A#H,

which generalizes the result of group rings introduced by Bennis and Mahdou[12]. It is now

very natural to ask whether cotorsion dimension of the weak crossed products, the weak

crossed products we consider here are generalizations of the crossed products and weak

smash products. This question motivates the present research.

This paper is organized as follows: In Section 2, we recall some basic definitions and

results such as cotorsion dimension, weak Hopf algebras, weak crossed products and so on.

In Section 3, we mainly investigate the relationship between the global cotorsion dimension

of the weak crossed product A#σH with the algebra A.

2 Preliminaries

Throughout this paper, we work over a commutative field k. All algebras, linear spaces etc.

are over k; unadorned ⊗ means ⊗k.

2.1 Cotorsion Dimension

The cotorsion dimension of an A-module M denoted by cdA(M) is the least positive integer

n satisfying Extn+1
A (F, M) = 0 for all flat A-modules F . In particular, if cdA(M) = 0,

then M is called cotorsion. The right global dimension of A is denoted by r.D(A). The left

global cotorsion dimension of A, denoted by l.cot.D(A), is defined as the supremum of the

cotorsion dimensions of A-modules (see [10]).

2.2 Weak Hopf Algebras

For the basic definitions and properties of weak Hopf algebras, see [2]. Recall that a weak

Hopf algebra H is an algebra (H, m, µ) and coalgebra (H, ∆, ε) such that for h, k, l ∈ H,

the following axioms hold:

(1) ∆(hk) = ∆(h)∆(k);

(2) ∆2(1) = 1(1) ⊗ 1(2)1(1′) ⊗ 1(2′) = 1(1) ⊗ 1(1′)1(2) ⊗ 1(2′);

(3) ε(hkl) = ε(hk(1))ε(k(2)l) = ε(hk(2))ε(k(1)l);

(4) There exists a k-linear map S : H −→ H, called the antipode, satisfying

h(1)S(h(2)) = ε(1(1)h)1(2),

S(h(1))h(2) = 1(1)ε(h1(2)),

S(h) = S(h(1))h(2)S(h(3)).

We have idempotent maps εt, εs, ε̄t, ε̄s: H −→ H defined by

εt(h) = ε(1(1)h)1(2), εs(h) = 1(1)ε(h1(2)),

ε̄t(h) = ε(h1(1))1(2), ε̄s(h) = 1(1)ε(1(2)h),


