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1 Introduction

Let I, J be intervals in R, (0, 1) ⊆ J . Let B(H) be the algebra of all bounded linear

operators on a complex separable Hilbert space H. Denoted by B(H)ad the set of selfadjoint

operator in B(H). In 1991, Pec̆carić et al.[1] proved the following integral inequality:

Let f : I ⊆ R → R be a convex function and a, b ∈ I with a < b. Then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
, (1.1)

which is known as the Hermite-Hadamard’s integral inequality.

More recently, a number of papers have been written providing noteworthy extensions,

generalizations and refinements for more extensive functions (see [2]–[15]).

Sarikaya et al.[15] introduced a new class of convex functions called h-convex functions,

and proved the following Hermite-Hadamard type inequalities for h−convex functions.
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Definition 1.1 [15] Let h : J → R be a non-negative function. We say that f : I ⊆ R → R

is an h-convex function, if f is nonnegative and for all x, y ∈ I and t ∈ (0, 1), we have

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y). (1.2)

If the above inequality is reversed, then f is said to be h-concave.

This notion unifies and generalizes the known classes of functions, for instance, con-

vex functions, s-convex functions in the second sense, Gudunova-Levin functions and P -

functions, which are obtained by putting in (1.2),

h(t) = t, h(t) = ts, h(t) =
1

t
, h(t) = 1,

respectively. Many properties of functions mentioned above can be found in [12]–[14].

Theorem 1.1 [15] Let h : J → R be a non-negative function with h

(
1

2

)
̸= 0. If f is

h-convex with f ∈ L1[a, b], then

1

2h

(
1

2

)f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ [f(a) + f(b)]

∫ 1

0

h(t)dt. (1.3)

Hason[16] gave the notion of invexity as significant generalization of classical convexity.

Let X be a real vector space. A set S ⊆ X is said to be invex with respect to the map

η : S × S → X , if for every x, y ∈ S and t ∈ [0, 1],

x+ tη(y, x) ∈ S.

It is obvious that every convex set is invex with respect to the map η(y, x) = y− x, but

there exist invex sets which are not convex (see [17]).

For every x, y ∈ S the η-path Pxv joining the points x and v := x+ η(y, x) is defined as

Pxv := {z | z = x+ tη(y, x) : t ∈ [0, 1]}.

The mapping η is said to be satisfies the condition (C) if for every x, y ∈ S and t ∈ [0, 1],

η(x, y + tη(x, y)) = (1− t)η(x, y), η(y, y + tη(x, y)) = −tη(x, y).

Note that for every x, y ∈ S and t ∈ [0, 1], if η satisfying condition (C) we have

η(y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y). (1.4)

In fact,

η(y + t2η(x, y), y + t1η(x, y))

= η(y + t2η(x, y), y + t2η(x, y) + (t1 − t2)η(x, y))

= η(y + t2η(x, y), y + t2η(x, y) +
t1 − t2
1− t2

η(x, y + t2η(x, y)))

=
t1 − t2
1− t2

η(x, y + t2η(x, y))

= (t2 − t1)η(x, y).


