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Abstract: In this paper, we introduce a new subclass of bi-univalent functions de-

fined by quasi-subordination and Hohlov operator and obtain the coefficient estimates

and Fekete-Szegö inequality for function in this new subclass. The results presented

in this paper improve or generalize the recent works of other authors.
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estimate, Fekete-Szegö inequality, Hohlov operator, quasi-subordination

2010 MR subject classification: 30C45

Document code: A

Article ID: 1674-5647(2019)03-0235-12

DOI: 10.13447/j.1674-5647.2019.03.05

1 Introduction

Let H denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Further, by S we denote the

family of all functions in H which are univalent in U .

In [1], Robertson introduced the concept of quasi-subordination. For two analytic func-
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tions f and φ, the function f is quasi-subordination to φ written as

f(z) ≺q φ(z), z ∈ U,

if there exist analytic functions h and ω with |h(z)| ≤ 1, ω(0) = 0 and |ω(z)| < 1 such that
f(z)

h(z)
≺ φ(z),

which is equivalent to

f(z) = h(z)φ(ω(z)), z ∈ U.

Observe that if h(z) ≡ 1, then the quasi-subordination reduces to be subordination. Also,

if ω(z) = z, then

f(z) = h(z)φ(z),

and in this case we say that f(z) is majorized by φ(z) and it is written as

f(z) ≪ φ(z), z ∈ U.

Obviously, the quasi-subordination is the generalization of subordination as well as ma-

jorization.

For the functions f, g ∈ H, where f(z) is given by (1.1) and

g(z) = z +
∞∑

n=2

bnz
n,

the Hadamard product or convolution is denoted by f ∗ g and is defined by:

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n, (1.2)

and the Gaussian hypergeometric function 2F1(a, b, c; z) for the complex parameters a, b

and c with c ̸= 0, −1, −2,−3, · · · is defined by:

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1

zn−1

(n− 1)!
, z ∈ U, (1.3)

where (l)n denotes the Pochhammer symbol (the shifted factorial) defined by:

(l)n =
Γ(l + n)

Γ(l)
=

{
1, n = 0, l ∈ C\{0};
l(l + 1) · · · (l + n− 1), n = 1, 2, 3, · · · .

For the positive real values a, b and c (c ̸= 0,−1,−2,−3, · · · ), Hohlov[2]–[3] introduced a

convolution operator Ia,b;c by using the Gaussian hypergeometric function 2F1(a, b, c; z)

given by (1.3) as follows:

Ia,b;cf(z) = z2F1(a, b, c; z) ∗ f(z) = z +
∞∑

n=2

ynanz
n, z ∈ U, (1.4)

where

yn =
(a)n−1(b)n−1

(c)n−1(n− 1)!
. (1.5)

Observe that, if b = 1 in (1.5), then the Hohlov operator Ia,b;c reduces to the Carlson-

Shaffer operator. Also it can be easily seen that the Hohlov operator is a generalization of

the Ruscheweyh derivative operator and the Bernardi-Libera-Livingston operator.

It is well known that every function f ∈ S has an inverse f−1, which is defined by

f−1(f(z)) = z, z ∈ U


