Remark on the Lifespan of Solutions to 3-D Anisotropic Navier Stokes Equations

Siyu Liang^{1,2,4}, Ping Zhang^{1,2,*} and Rongchan Zhu^{3,4}

 ¹ Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.
 ² School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
 ³ Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China.
 ⁴ Department of Mathematics, University of Bielefeld, D-33615 Bielefeld, Germany.

Received 10 February 2020; Accepted 29 February 2020

Abstract. The goal of this article is to provide a lower bound for the lifespan of smooth solutions to 3-D anisotropic incompressible Navier-Stokes system, which in particular extends a similar type of result for the classical 3-D incompressible Navier-Stokes system.

AMS subject classifications: 35Q30, 76D03 **Key words**: Anisotropic Navier-Stokes system, Littlewood-Paley theory, lifespan.

1 Introduction

In this article, we shall investigate the lifespan for smooth enough solutions to the following 3-D anisotropic incompressible Navier-Stokes system:

$$\begin{cases} \partial_t u + u \cdot \nabla u - \Delta_{\mathbf{h}} u = -\nabla p, \\ \operatorname{div} u = 0, \\ u|_{t=0} = u_0, \end{cases}$$
(1.1)

http://www.global-sci.org/cmr

©2020 Global-Science Press

^{*}Corresponding author. *Email addresses:* liangsiyu@amss.ac.cn (S. Liang), zp@math.ac.cn (P. Zhang), zhurongchan@126.com (R. Zhu)

where $\Delta_h \stackrel{\text{déf}}{=} \partial_1^2 + \partial_2^2$, *u* designates the velocity of the fluid and *p* the scalar pressure function which guarantees the divergence free condition of the velocity field.

Systems of this type appear in geophysical fluid dynamics (see for instance [5, 16]). In fact, meteorologists often modelize turbulent diffusion by putting a viscosity of the form: $-\mu_h\Delta_h - \mu_3\partial_3^2$, where μ_h and μ_3 are empirical constants, and μ_3 is usually much smaller than μ_h . We refer to the book of Pedlovsky [16], Chap. 4 for a complete discussion about this model.

We remark that for the classical Navier-Stokes system (NS), which corresponds to (1.1) with Δ_h there being replaced by $\Delta = \partial_1^2 + \partial_2^2 + \partial_3^2$, Leray [12] proved the global existence of weak solutions to (NS) in 1934. Yet the uniqueness and regularity to such weak solutions are still open. In [6], Chemin and Gallagher showed that: let u_0 be a regular solenoidal vector field, then the classical Navier-Stokes system (NS) has a unique regular solution on [0,T]. Let $T^*(u_0)$ be the maximal time of existence of this regular solution. Then for any $\gamma \in (0,1/4)$, a positive constant C_{γ} exists so that

$$T^{\star}(u_0) \ge C_{\gamma} \|u_0\|_{\dot{H}^{\frac{1}{2}+2\gamma}}^{-\frac{1}{\gamma}}.$$
(1.2)

In the special case when $\gamma = \frac{1}{4}$, this type of result goes back to the seminal work of Leray [12]. Lately the same type of result has been proved for 3-D inhomogeneous incompressible Navier-Stokes system in [17] by the second author.

Considering that the system (1.1) has only horizontal dissipation, it is reasonable to use anisotropic Sobolev space defined as follows:

Definition 1.1. For any (s,s') in \mathbb{R}^2 , the anisotropic Sobolev space $\dot{H}^{s,s'}(\mathbb{R}^3)$ denotes the space of homogeneous tempered distribution a such that

$$\|a\|_{\dot{H}^{s,s'}}^{2} \stackrel{def}{=} \int_{\mathbb{R}^{3}} |\xi_{h}|^{2s} |\xi_{3}|^{2s'} |\hat{a}(\xi)|^{2} d\xi < \infty \quad with \quad \xi_{h} = (\xi_{1},\xi_{2}).$$

Mathematically, Chemin et al. [4] first studied the system (1.1). In particular, Chemin et al. [4] and Iftimie [11] proved that (1.1) is locally well-posed with initial data in $L^2 \cap \dot{H}^{0,\frac{1}{2}+\varepsilon}$ for some $\varepsilon > 0$, and is globally well-posed if in addition

$$\|u_0\|_{L^2}^{\varepsilon}\|u_0\|_{\dot{H}^{0,\frac{1}{2}+\varepsilon}}^{1-\varepsilon} \le c \tag{1.3}$$

for some sufficiently small constant *c*.

Paicu [14] improved the well-posedness result in [4,11] to be the critical case, namely, with initial data in the critical anisotropic Besov space, which basically