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Abstract. We study the constrained system of linear equations

Ax=b, x∈R
(

Ak
)

for A∈Cn×n and b∈Cn,k= Ind(A). When the system is consistent, it is well
known that it has a unique ADb. If the system is inconsistent, then we seek for
the least squares solution of the problem and consider

min
x∈R

(

Ak
)

‖b−Ax‖2,

where ‖·‖2 is the 2-norm. For the inconsistent system with a matrix A of in-
dex one, it was proved recently that the solution is A ♯©b using the core inverse
A ♯© of A. For matrices of an arbitrary index and an arbitrary b, we show that
the solution of the constrained system can be expressed as A †©b where A †© is
the core-EP inverse of A. We establish two Cramer’s rules for the inconsistent
constrained least squares solution and develop several explicit expressions for
the core-EP inverse of matrices of an arbitrary index. Using these expressions,
two Cramer’s rules and one Gaussian elimination method for computing the
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core-EP inverse of matrices of an arbitrary index are proposed in this paper.
We also consider the W-weighted core-EP inverse of a rectangular matrix and
apply the weighted core-EP inverse to a more general constrained system of
linear equations.
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1 Introduction

Let C be the field of complex numbers and Cm×n be the set of all m×n matrices
over C. For a matrix A ∈ C

m×n, AT,A∗,R(A),N (A), and Ind(A) stand for its
transpose, conjugate transpose, range, null space, and index. I is the identity
matrix of order n and ei is the i-th column of I. The Moore-Penrose inverse A† of
A is the unique matrix X∈Cn×m satisfying

AXA=A, (1.1)

XAX=X, (1.2)

(AX)∗=AX, (1.3)

(XA)∗=XA. (1.4)

The matrix X satisfying the 1st and 3rd matrix equations of the system of ma-

trix equations (1.1)-(1.4) is called a {1,3}-inverse of A, denoted by A(1,3) and the
collection of all {1,3}-inverses of A is denoted by A{1,3}. It is well known that
A† = A-1 for a nonsingular square matrix A and that A†b is the minimum norm
least squares solution of the system of linear equations Ax=b for a general matrix
A∈Cm×n and b∈Cm.

The Drazin inverse AD of a square matrix A∈Cn×n is the unique matrix X∈
C

n×n satisfying

XAX=X, XAk+1=Ak, AX=XA (1.5)

for k= Ind(A). It is well known that both A† and AD coincide with A-1 for non-
singular matrices. For the special case when Ind(A) is one, the Drazin inverse is
called the group inverse and is denoted by A#. The group inverse is a useful tool
in the study of Markov chains and the Drazin inverse is used to study the singu-
lar differential and difference equations [7]. It is well known that the constrained
system of linear equations

Ax=b, x∈R
(

Ak
)

(1.6)


