The Core-EP, Weighted Core-EP Inverse of Matrices and Constrained Systems of Linear Equations

Jun Ji^{1,*} and Yimin Wei²

 ¹ Department of Mathematics, Kennesaw State University, 1100 S. Marietta Pkwy, Marietta, GA 30060, USA.
² School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China.

Received 28 August 2020; Accepted 14 October 2020

Dedicated to Prof. Jiaoxun Kuang's 85-th Birthday

Abstract. We study the constrained system of linear equations

$$Ax = b, \quad x \in \mathcal{R}(A^k)$$

for $A \in \mathbb{C}^{n \times n}$ and $b \in \mathbb{C}^n$, k = Ind(A). When the system is consistent, it is well known that it has a unique $A^D b$. If the system is inconsistent, then we seek for the least squares solution of the problem and consider

$$\min_{x\in\mathcal{R}(A^k)}\|b-Ax\|_{2\lambda}$$

where $\|\cdot\|_2$ is the 2-norm. For the inconsistent system with a matrix A of index one, it was proved recently that the solution is $A^{\oplus}b$ using the core inverse A^{\oplus} of A. For matrices of an arbitrary index and an arbitrary b, we show that the solution of the constrained system can be expressed as $A^{\oplus}b$ where A^{\oplus} is the core-EP inverse of A. We establish two Cramer's rules for the inconsistent constrained least squares solution and develop several explicit expressions for the core-EP inverse of matrices of an arbitrary index. Using these expressions, two Cramer's rules and one Gaussian elimination method for computing the

^{*}Corresponding author. *Email addresses:* jji@kennesaw.edu (J. Ji), ymwei@fudan.edu.cn, yimin. wei@gmail.com(Y. Wei)

core-EP inverse of matrices of an arbitrary index are proposed in this paper. We also consider the *W*-weighted core-EP inverse of a rectangular matrix and apply the weighted core-EP inverse to a more general constrained system of linear equations.

AMS subject classifications: 15A09, 15A24, 15A29, 15A57

Key words: Bott-Duffin inverse, Core-EP inverse, weighted core-EP inverse, Cramer's rule, Gaussian elimination method.

1 Introduction

Let \mathbb{C} be the field of complex numbers and $\mathbb{C}^{m \times n}$ be the set of all $m \times n$ matrices over \mathbb{C} . For a matrix $A \in \mathbb{C}^{m \times n}$, $A^T, A^*, \mathcal{R}(A), \mathcal{N}(A)$, and Ind(A) stand for its transpose, conjugate transpose, range, null space, and index. *I* is the identity matrix of order *n* and e_i is the *i*-th column of *I*. The Moore-Penrose inverse A^+ of *A* is the unique matrix $X \in \mathbb{C}^{n \times m}$ satisfying

$$AXA = A, \tag{1.1}$$

$$XAX = X, \tag{1.2}$$

$$(AX)^* = AX, \tag{1.3}$$

$$(XA)^* = XA. \tag{1.4}$$

The matrix X satisfying the 1st and 3rd matrix equations of the system of matrix equations (1.1)-(1.4) is called a {1,3}-inverse of A, denoted by $A^{(1,3)}$ and the collection of all {1,3}-inverses of A is denoted by $A\{1,3\}$. It is well known that $A^{\dagger} = A^{-1}$ for a nonsingular square matrix A and that $A^{\dagger}b$ is the minimum norm least squares solution of the system of linear equations Ax = b for a general matrix $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$.

The Drazin inverse A^D of a square matrix $A \in \mathbb{C}^{n \times n}$ is the unique matrix $X \in \mathbb{C}^{n \times n}$ satisfying

$$XAX = X, \quad XA^{k+1} = A^k, \quad AX = XA \tag{1.5}$$

for k = Ind(A). It is well known that both A^{\dagger} and A^{D} coincide with A^{-1} for nonsingular matrices. For the special case when Ind(A) is one, the Drazin inverse is called the group inverse and is denoted by $A^{\#}$. The group inverse is a useful tool in the study of Markov chains and the Drazin inverse is used to study the singular differential and difference equations [7]. It is well known that the constrained system of linear equations

$$Ax = b, \quad x \in \mathcal{R}(A^k) \tag{1.6}$$