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Abstract. In this paper, we give further results on the Drazin inverse of tensors
via the Einstein product. We give a limit formula for the Drazin inverse of
tensors. By using this formula, the representations for the Drazin inverse of
several block tensor are obtained. Further, we give the Drazin inverse of the
sum of two tensors based on the representation for the Drazin inverse of a block
tensor.
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1 Introduction

For a positive integer N, let [N]={1,.. . ,N}. An order N tensor A=(ai1 ...iN
)16ij6Ij

(j∈[N]) is a multidimensional array with I1I2 ··· IN entries [15]. Clearly, an order 2
tensor is a matrix. Let CI1×···×IN denote the set of all I1×···× IN dimension order
N tensors over complex field. A tensor A= (ai1 ···iN j1···jN

) ∈ CI1×···×IN×I1×···×IN

whose entries ai1 ···iN i1···iN
=1 (ij∈[Ij], j∈[N]) and the other entries are zero is a unit

tensor, denoted by I .

For tensors A∈C
I1×···×IN1

×K1×···×KN and B∈C
K1×···×KN×J1×···×JN2 , the Einstein

product of A and B, denoted by A∗NB, is an order N1+N2 dimension I1×···×IN1

×J1×···× JN2
tensor with entries
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(A∗NB)i1 ···iN1
j1···jN2

= ∑
k1···kN

ai1 ···iN1
k1···kN

bk1···kN j1···jN2
.

Clearly, when A and B are matrices, the above product is the usual matrix prod-
uct.

The Einstein product of tensors was widely used in the areas of the theory
of relativity [5] and continuum mechanics [10], and the tensor systems via the
Einstein product have many applications in continuum physics, engineering, iso-
tropic and anisotropic elastic models [10]. In the process of solving a tensor equa-
tion via the Einstein product for the problems of high-dimensional PDEs and
large discrete quantum models, an inverse of tensors via the Einstein product
was proposed in [4]. For A∈CI1×···×IN×I1×···×IN , if there exists a tensor X such
that A∗NX = X ∗NA= I , then X is called the inverse of A. And A is called
invertible, the inverse of A is denoted by A−1.

In order to give the minimum-norm least-square of tensor equations via the
Einstein product, the {i}-inverse and Moore-Penrose inverse of tensors via the
Einstein product were defined, and the representations for the Moore-Penrose
inverse of some block tensors were established [18]. After that, the problem of
inverse and generalized inverses of tensors via the Einstein product has attracted
much attention including that the methods to compute the Moore-Penrose in-
verse of tensors [1], the perturbation theory for Moore-Penrose inverse [12], the
properties of weighted Moore-Penrose inverse [8], the extreme learning machine
based on Moore-Penrose inverse [7], and so on [14, 16, 17, 19–21]. Recently, the
Drazin inverse of an even-order tensor via the Einstein product was proposed,
and a singular tensor equation was studied [9].

For A∈CI1×···×IM×J1×···×JN ,

R(A)=
{

A∗NX :X ∈C
J1×···×JN

}

,

N(A)=
{

X ∈C
J1×···×JN :A∗NX =0

}

are called the range and the null space of A, respectively. For a tensor A ∈
CI1×···×IN×I1×···×IN , Ak denotes the k power of A, and A0 =I . The smallest non-
negative integer k such that R(Ak+1)=R(Ak) is called the index of A, denoted by
ind(A). For A∈CI1×···×IN×I1×···×IN , if there exists a tensor X ∈CI1×···×IN×I1×···×IN

such that

Al∗NX ∗NA=Al , X ∗NA∗NX =X , A∗NX =X ∗NA,

then X is called the Drazin inverse of A, denoted by X=AD, where l>ind(A). If
ind(A)=1, then X is called the group inverse of A, denoted by A#. We know that


