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Abstract. This paper concerns the inviscid, heat-conductive and resistive com-
pressible MHD system in a horizontally periodic flat strip domain. The global
well-posedness of the problem around an equilibrium with the positive con-
stant density and temperature and a uniform non-horizontal magnetic field
is established, and the solution decays to the equilibrium almost exponen-
tially. Our result reveals the strong stabilizing effect of the transversal mag-
netic field and resistivity as the global well-posedness of compressible inviscid
heat-conductive flows in multi-D is unknown.
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1 Introduction

When the viscosity is neglected whereas the heat conduction and magnetic diffu-
sion are taken into account, the dynamics of compressible electrically conducting
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fluids interacting with magnetic fields can be described by the following magne-
tohydrodynamic system (MHD) [7, 11]:






∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇p=curlB×B,

∂t(ρe)+div(ρue)+pdivu−µ∆θ=κ |curlB|2 ,

∂tB=curlE, E=u×B−κcurlB,

divB=0,

(1.1)

where ρ, u, θ and B denote the density, velocity, temperature and magnetic field,
respectively, and E is the electric field. The fluid is assumed to obey the ideal
polytropic law, so the pressure p=Rρθ and the internal energy e= cvθ with con-
stants R,cv >0. µ>0 is the heat conduction coefficient and κ>0 is the magnetic
diffusion coefficient.

The main difficulty of studying the global well-posedness of (1.1) lies in the
absence of the viscosity. Similar to the Navier-Stokes equations, the viscous and
resistive (incompressible and compressible) MHD system has a unique global
classical solution, at least for the small initial data, see [5, 9, 18] for instance. On
the other hand, it is remarkable that the ideal incompressible homogeneous MHD
system in the whole space also admits a unique global classical solution around
a nonzero uniform magnetic field [2, 3, 8, 22]. It is then natural to ask whether
the MHD systems with only the viscosity or resistivity admit global classical so-
lutions or develop singularities in finite time. The global existence of classical
solutions to the viscous and non-resistive MHD systems has been established
around a nonzero uniform magnetic field. For the Cauchy problem, we refer
to [1, 13, 15, 25, 27] for the incompressible homogeneous case and [24] for the 2D
compressible isentropic case. For the initial boundary value problem, the global
well-posedness has been proved only for the case of a horizontally flat strip do-
main, see [16] for the 2D incompressible homogeneous system around a uniform
horizontal magnetic field and [20] for the 3D (incompressible and compressible)
systems around a uniform non-horizontal magnetic field. The inviscid and resis-
tive incompressible homogeneous 2D MHD system has a global weak solution
in H1, but the question whether such weak solutions are unique or can be im-
proved to be global classical solutions remains open [4, 10, 12]. For a 2D periodic
domain, [28] showed the global existence of classical solutions around a nonzero
uniform magnetic field when the initial data has certain symmetries, and [23]
proved a global well-posedness around the zero magnetic field.

In this paper, we consider the compressible MHD system (1.1) in the strip
domain Ω=T

2×(0,1) for T=R/Z, with the following boundary conditions:


