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Abstract. In the study of (partial) difference sets and their generalizations in
groups G, the most widely used method is to translate their definition into an
equation over group ring Z[G] and to investigate this equation by applying
complex representations of G. In this paper, we investigate the existence of
(partial) difference sets in a different way. We project the group ring equations
in Z[G] to Z[N] where N is a quotient group of G isomorphic to the additive
group of a finite field, and then use polynomials over this finite field to derive
some existence conditions.
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1 Introduction

Let G be a finite group of order v and D a k-subset of G. We call D a (v,k,λ,µ) -

partial difference set in G if the expressions d1d−1
2 , for distinct d1,d2∈D, represent

each non-identity element contained in D exactly λ times and represent each non-
identity element not contained in D exactly µ times. In particular, when λ= µ,
a partial difference set is just an ordinary difference set.
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Usually, (partial) difference sets are studied using the group ring Z[G] or C[G].
Let Z[G] denote the set of formal sums ∑g∈G agg, where ag ∈Z and G is a multi-

plicative group. The addition and the multiplication on Z[G] are defined by

∑
g∈G

agg+ ∑
g∈G

bgg := ∑
g∈G

(ag+bg)g,

and (

∑
g∈G

agg

)

·

(

∑
g∈G

bgg

)

:= ∑
g∈G

(

∑
h∈G

ahbh−1g

)

·g

for ∑g∈G agg, ∑g∈G bgg∈Z[G]. Moreover,

λ·

(

∑
g∈G

agg

)

:= ∑
g∈G

(λag)g

for λ∈Z and ∑g∈G agg∈Z[G].

For an element D=∑g∈G agg∈Z[G] and t∈Z, we define

D(t) := ∑
g∈G

aggt.

An important case is D(−1)=∑g∈G agg−1. If D is a subset of G, we identify D with

the group ring element ∑d∈D d. A subset D in G is a (v,k,λ,µ)-partial difference
set if and only if

DD(−1)=µG+(λ−µ)D+γ1G, (1.1)

where 1G denotes the identity element of G.

When λ 6= µ, i.e. D is not a difference set, there is always D(−1)= D, see [8].

Note that D is a partial difference set with D(−1)= D and 1G /∈ D, if and only if,
D generates a strongly regular graph Cay(G,D). Here Cay(G,D) is defined to be
a graph with the elements in G as vertices, and in which two vertices g and h are

adjacent if and only if gh−1 ∈D. Usually, a partial difference set with D(−1)=D
and 1G /∈D is called regular.

Partial difference sets have been intensively investigated for decades. There
are many known constructions and necessary conditions on their existence. We
refer to [9] for a classical survey. More construction results could be found in
[1, 10–13]. For existence conditions and classification result, see [2–4, 6, 15, 16].

The most powerful approach for the study of (partial) difference sets is to
translate their definition into an equation over group ring Z[G] and to investigate


