Some New Results on Purely Singular Splittings

Pingzhi Yuan*

School of Mathematical Science, South China Normal University, Guangzhou 510631, China.

Received 29 November 2020; Accepted 23 March 2021

Abstract. Let *G* be a finite abelian group, *M* a set of integers and *S* a subset of *G*. We say that *M* and *S* form a splitting of *G* if every nonzero element *g* of *G* has a unique representation of the form g=ms with $m \in M$ and $s \in S$, while 0 has no such representation. The splitting is called purely singular if for each prime divisor *p* of |G|, there is at least one element of *M* is divisible by *p*. In this paper, we continue the study of purely singular splittings of cyclic groups. We prove that if $k \ge 2$ is a positive integer such that $[-2k+1, 2k+2]^*$ splits a cyclic group \mathbb{Z}_m , then m=4k+2. We prove also that if $M=[-k_1,k_2]^*$ splits \mathbb{Z}_m purely singularly, and $15 \le k_1+k_2 \le 30$, then m=1, or $m=k_1+k_2+1$, or $k_1=0$ and $m=2k_2+1$.

AMS subject classifications: 20D60, 20K01, 94A17

Key words: Splitter sets, perfect codes, factorizations of cyclic groups.

1 Introduction

Let *G* be a finite group, written additively, *M* a set of integers, and *S* a subset of *G*. We say that *M* and *S* form a splitting of *G* if every nonzero element *g* of *G* has a unique representation of the form g = ms with $m \in M$ and $s \in S$, while 0 has no such representation. (Here *ms* denotes the sum of *m s*'s if $m \ge 0$, and -((-m)s) if m < 0.) We write $G \setminus \{0\} = MS$ to indicate that *M* and *S* form a splitting of *G*. *M* is

^{*}Corresponding author. *Email address:* yuanpz@scnu.edu.cn (P. Yuan)

referred to as the multiplier set and *S* as the splitter set. We also say that *M* splits *G* with a splitter set *S*, or simply that *M* splits *G*.

Let *a*,*b* be integers such that $a \leq b$, denote

$$[a,b] = \{a,a+1,a+2,\ldots,b\}, \quad [a,b]^* = \{a,a+1,a+2,\ldots,b\} \setminus \{0\}.$$

For any positive integer q, let \mathbb{Z}_q be the ring of integers modulo q and $\mathbb{Z}_q^* = \mathbb{Z}_q \setminus \{0\}$. For $a \in \mathbb{Z}_q$, o(a) denotes the order of a in the additive group \mathbb{Z}_q .

Let *q* be a positive integer and k_1, k_2 be non-negative integers with $0 \le k_1 \le k_2$. The set $B \subset \mathbb{Z}_q$ is called a splitter set (or a packing set) if all the sets

$$\{ab \pmod{q}: a \in [-k_1, k_2]\}, b \in B$$

have k_1+k_2 nonzero elements, and they are disjoint. We denote such a splitter set by $B[-k_1,k_2](q)$ set. A $B[-k_1,k_2](q)$ set of size n is called perfect if $n = \frac{q-1}{k_1+k_2}$. Clearly, a perfect set can exist only if $q \equiv 1 \pmod{k_1+k_2}$. A perfect $B[-k_1,k_2](q)$ set is called nonsingular if $gcd(q,k_2!) = 1$. Otherwise, the set is called singular. If for any prime p|q, there is some k with $0 < k \le k_2$ such that p|k, then the perfect $B[-k_1,k_2](q)$ set is called purely singular.

Remark 1.1. Let *q* be a positive integer and k_1, k_2 be non-negative integers with $0 \le k_1 \le k_2$. Let $M = [-k_1, k_2]^*$. Then *M* splits an abelian group *G* of order *q* if and only if *M* splits \mathbb{Z}_q by the works of Hamaker and Stein [1], Hickerson [2] and Schwarz [3]. It means that there is a subset $B \subset \mathbb{Z}_q$ such that *B* is a perfect $B[-k_1, k_2](q)$ sets for the cyclic group \mathbb{Z}_q . Therefore, we are only interested in considering purely singular perfect $B[-k_1, k_2](q)$ sets for the cyclic group \mathbb{Z}_q and nonsingular perfect $B[-k_1, k_2](p)$ sets for an odd prime *p*.

In this paper, we focus our attention to the purely singular perfect $B[-k_1,k_2](q)$ sets for the cyclic group \mathbb{Z}_q . By taking as splitting set $S=\emptyset$, $S=\{1\}$, and $S=\{-1,1\}$, respectively, one see that [1,k] splits \mathbb{Z}_1 , \mathbb{Z}_{k+1} , and \mathbb{Z}_{2k+1} for every k. It is conjectured that every purely singular splitting is one of these three types (see, e.g., [7]).

Conjecture 1.1. Let *k* be a positive integer. If [1, k] splits the finite abelian group *G* purely singularly, then *G* is one of \mathbb{Z}_1 , \mathbb{Z}_{k+1} , or \mathbb{Z}_{2k+1} .

Conjecture 1.1 has been verified by Hickerson for all k < 3000 (see [7]).

As an analogy to the above conjecture, we have the following conjecture, which covers the related conjecture in [9].

Conjecture 1.2. Let k_1, k_2 be integers with $1 \le k_1 \le k_2$ and $k_1 + k_2 \ge 4$, then there does not exist any purely singular perfect $B[-k_1, k_2](m)$ set except for m = 1 and $m = k_1 + k_2 + 1$.